cho a\(\in\) I
nếu a+b\(\in\) I
a.b\(\in\)I
hỏi b\(\in\)Q hay \(\in\)I
c/m nhé
ai làm nhanh và đúng mk k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiếu đề ak bạn, đề cho a thuộc Q, chưa cho điều kiện j mà sao hỏi b thuộc j
điều kiện còn ở dưới nửa nha bn đọc kĩ đề tồi ý kiến .OK =_=
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
a) \(\sqrt 3 \in \mathbb{Q}\) sai.
Sửa lại: \(\sqrt 3 \notin \mathbb{Q}\)
b) \(\sqrt 3 \in \mathbb{R}\) đúng.
c) \(\frac{2}{3} \notin \mathbb{R}\) sai.
Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)
d) \( - 9 \in \mathbb{R}\) đúng.
Tổng số dòng trong một quyển sách là:
28 x 210 = 5880 (dòng)
Mỗi trang in 30 dòng thì số trang in được trong mỗi quyển là:
5880 : 30 = 196 (trang)
Đáp số: 196 trang
Số dòng ở trong quyển sách là:
28 x 210 = 5880 ( dòng )
In mỗi trang 30 dòng thì in được số quyển sách cùng loại là:
5880 : 30 = 196 ( quyển )
Đ/S: 196 quyển sách