K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

Hình như chưa có y,z...

9 tháng 3 2020
  1. Do (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)

       2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}

       3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x- 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x- 10) < 0 nên phair cos thừa  số be hơn 0.

=> 0 < x2 < 11

Từ 3 điều trên ==> x2 = 9 => x = 3

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

2 tháng 4 2020

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!

2 tháng 4 2020

20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
 

8 tháng 3 2018

a)  x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6

Vậy  x = 0 hoặc  x = - 6

b)  ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7

Vậy x = 3 hoặc x = -7

c)  ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2   ( L )

Vậy x = 2

22 tháng 8 2019

28 tháng 11 2023

(x² + 7)(x² - 7) < 0

⇒ x² - 7 < 0

⇒ x² < 7

⇒ -√7 < x < √7

Mà x ∈ Z

⇒ x ∈ {-2; -1; 0; 1; 2}

29 tháng 11 2023

\(\left(x^2+7\right)\left(x^2-7\right)< 0\)

mà \(x^2+7>=7>0\forall x\)

nên \(x^2-7< 0\)

=>\(x^2< 7\)

=>\(-\sqrt{7}< x< \sqrt{7}\)

mà x nguyên

nên \(x\in\left\{-2;-1;0;1;2\right\}\)

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...