CHO HÌNH CHÓP S.ABCD CÓ MẶT ĐÁY ABCD LÀ HÌNH VUÔNG CẠNH 4. HÌNH CHIẾU CỦA S LÊN MP ABCD LÀ TRUNG ĐIỂM H CỦA CẠNH AB, GÓC GIŨA MP SCD VÀ ABCD LÀ 30.TÍNH d(a,(SCD))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)
\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)
\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)
\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)
\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)
b.
\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)
Qua S kẻ đường thẳng d song song AD
Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)
Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)
\(AE=\dfrac{AB}{2}=a\)
\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)
Đáp án B
Ta có d(K;(SCD))
Ta có
Có góc giữa SC và đáy là nên ta có
Ta có
Đáp án B
d K , S C D = 1 2 d H , S C D = 1 2 H F .
A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a
C H = B H 2 + B C 2 = 13 3 a .
C ó g ó c g i ữ a S C v à đ á y l à 60 ° n ê n t a c ó
S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a
ta có 1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a