giải phương trình sau
\(\sqrt{x-\frac{1}{x}}\) + \(\sqrt[5]{1-\frac{1}{x}}\) + 2 = 3x + \(\frac{2}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0;x-\frac{1}{x}\ge0;1-\frac{1}{x}\ge0\)
phương trình tương đương với
\(\sqrt{\frac{x-1}{x}\left(x+1\right)}+5\sqrt{\frac{x-1}{x}}+\frac{2\left(x-1\right)}{x}-3\left(x+1\right)+3=0\)\(\left(1\right)\)
Đặt \(a=\sqrt{\frac{x-1}{x}}\)\(;\)\(b=\sqrt{x+1}\)\(\left(a,b\ge0\right)\)
Ta có \(\left(1\right)\)\(\Leftrightarrow ab+5a+2a^2-3b^2+3=0\)
\(\Leftrightarrow\left(a-b+1\right)\left(2a+3b+3\right)=0\)
\(\Leftrightarrow a-b+1=0\)(vì \(a,b\ge0\)nên \(2a+3b+3>0\))
\(\Leftrightarrow\sqrt{x+1}-\sqrt{\frac{x-1}{x}}=1\)\(\left(2\right)\)
Bình phương hai vế của \(\left(2\right)\)ta được
\(x+1-2\sqrt{\frac{x^2-1}{x}}+\frac{x-1}{x}=1\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)-2\sqrt{x-\frac{1}{x}}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-\frac{1}{x}}-1\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{x}=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(TMDK\right)\\x=\frac{1-\sqrt{5}}{2}\left(L\right)\end{cases}}\)
Vậy phương trình có nghiệm là : \(x=\frac{1+\sqrt{5}}{2}\)
P / s : Các bạn tham khảo nha
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
ai kb voi mk ko
kb ko
hihi