K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là phân giác

b: Xét ΔHBD vuông tại H và ΔKCD vuông tại K có

BD=CD

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHBD=ΔKCD

4 tháng 5 2022

db

 

 

3 tháng 5 2019

A B C H D K

a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:

       \(BC^2=AB^2+AC^2\)

       \(BC^2=5^2+12^2\)

       \(BC^2=25+144\)

       \(BC^2=169\) 

        \(BC=13\)

Vậy cạnh BC = 13cm

b)Xét tam giác AHD và tam giác AKD ta có:

      \(\widehat{AHD}=\widehat{AKD}=90^o\)

       AD chung

       \(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)

=> tam giác AHD = tam giác AKD (g.c.g)

     

3 tháng 5 2019

Bạn có thể làm ý d được ko ạ

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )

24 tháng 6 2020

Bài làm:

a, Áp dụng đl Pythagoras vào ∆ABC vuông tại A có

BC² = AB² + AC²

=> BC² = 6² + 8² 

=> BC² = 100

=> BC = √100 = 10(cm) (do BC> 0)

b, Ta có DH ⊥ BC (gt)

=> BHD = CHD = 90°

Xét ∆ABD vuông tại A và ∆HBD vuông tại H có

BD : chung

ABD = CBD (BD là pg ABC - gt)

=>∆ABD = ∆HBD (ch-gn)

=> AD = DH (2 cạnh t/ứ)

c, Xét ∆DHC vuông tại H có

DC > HD (ch > cgv)

Mà HD = AD (cmt)

=> DC > AD

d, Ta có BAC +KAC = 180° (kề bù)

=> 90° + KAC = 180°

=> KAC = 90°

Lại có : KB = BC (gt)

AB = BH (∆ABD = ∆HBD)

=> KB - AB = BC - BH

=> AK = CH

Xét ∆AKD vuông tại A và ∆HCD vuông tại H có

AK = CH (cmt)

AD = HD (cmt)

=>∆AKD = ∆HCD (2 cgv)

=> ADK = HDC (2 góc t/ứ)

Mặt khác ta có

ADH + HDC = 180° (kề bù)

=> ADK + ADH = 180°

=> KDH = 180°

=> K,D,H thẳng hàng

24 tháng 6 2020

Bạn ơi bạn thử vẽ lại hình đi mình thấy sai rồi nhé

A B C D H K

Xét tam giác ABD và tam giác HBD có:

BD: chung.

Góc BAD=BHD=90 độ.

Góc ABD=HBD(Phân giác BD)

=> Tam giác ABD=tam giác HBD(ch-gn)

b/ Gọi giao điểm của BD và AH là O.

Xét tam giác AOB và tam giác HOB có:

BO:chung.

Góc ABO=HBO(Phân giác BD)

BA-BH(cạnh tương ứng của tam giác BAD=BHD)

=>Tam giác AOB=tam giác HOB(c-g-c)

=> Góc AOB=HOB(góc tương ứng)=90 độ

Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)

=> AH//KC

Mà BD vuông góc với AH nên BD cũng vuông góc với KC.

c/Xét tam giác ADK và tam giác HDC có:

DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)

Góc DAK=DHC=90 độ.

Góc ADK=HDC(đối đỉnh)

=> tam giác ADK=tam giác HDC(g-c-g)

=> DK=DC(cạnh tương ứng)

Mà trong tam giác vuông HDC có:

DC là cạnh huyền nên DC>DH

=> DK>DH(đpcm)