K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

A^2=7+2căn(12)

B^2=7+2căn(10)

A>B

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

16 tháng 7 2021

\(1.-3< -5+\sqrt{5}\)

\(2.-4>-2\sqrt{5}\)

\(3.-3\sqrt{5}< -6\)

2) \(4=\sqrt{16}\)

\(2\sqrt{5}=\sqrt{20}\)

mà 16<20

nên \(-4>-2\sqrt{5}\)

3) \(3\sqrt{5}=\sqrt{45}\)

\(6=\sqrt{36}\)

mà 45>36

nên \(-3\sqrt{5}< -6\)

24 tháng 9 2021

Ta có: 

\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)

\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)

Làm câu S tương tự như này rồi đối chiếu kết quả nha

11 tháng 8 2023

Đặt: 

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)

\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)  

\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

Mà: \(4\sqrt{5}>1\)

Nên: \(A^2< B^2\)

\(\Rightarrow A< B\)

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

=>A^2=(căn 10)^2=10=9+1

Đặt B=2+căn 5

=>B^2=(2+căn 5)^2=9+4căn 5

1<4căn 5

=>9+1<9+4căn 5

=>A^2<B^2

=>A<B

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

12 tháng 9 2018

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}\)\(\approx8,382332347\)\(>6\)

12 tháng 9 2018

Ta có:\(\sqrt{2}>1;\sqrt{3}>1;\sqrt{4}>1;\sqrt{5}>2\)

=>\(1+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}>1+1+1+1+2=6\)

=>đpcm

8 tháng 9 2021

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2