K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

giup mik với

a) Xét ΔAFH và ΔADB có

\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔAFH∼ΔADB(g-g)

b) Xét ΔBHF và ΔCHE có

\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)

\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)

Do đó: ΔBHF∼ΔCHE(g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)

hay \(BH\cdot HE=CH\cdot HF\)(đpcm)

10 tháng 3 2017

a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^

b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE

△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450

△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.

Chứng minh tương tự có △AMB vuông cân tại M.

c, Gọi F là giao điểm của BE và AK.

△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK

Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)

△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900

⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)

Từ (1) và (2) ⇒HK=CK

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

11 tháng 7 2019

#)Giải : (tiếp hơi chậm nhưng k sao :v)

a)Xét \(\Delta DMB\) và \(\Delta ENC\)có :

\(\widehat{MDB}=\widehat{NEC}=90^o\left(gt\right)\)

\(BD=CE\left(gt\right)\)

\(\widehat{B}=\widehat{ACB}\)(\(\Delta ABC\) cân tại A)

Mà \(\widehat{ACB}=\widehat{NCE}\)(hai góc đối đỉnh)

\(\Rightarrow\widehat{B}=\widehat{NCE}\)

\(\Rightarrow\Delta DMB=\Delta ENC\left(c.g.c\right)\)

\(\Rightarrow DM=EN\)(cặp cạnh tương ứng bằng nhau)

b)Ta có : \(MD\perp BC\) và \(NE\perp BC\)

\(\Rightarrow MD//NE\)

\(\Rightarrow\widehat{DMI}=\widehat{INE}\)(cặp góc so le trong bằng nhau)

Xét \(\Delta IMD\) và \(\Delta INE\) có :

\(\widehat{DMI}=\widehat{INE}\left(cmt\right)\)

\(DM=EN\)(cm câu a))

\(\widehat{MDI}=\widehat{NEI}=90^o\left(gt\right)\)

\(\Rightarrow\Delta IMD=\Delta INE\left(g.c.g\right)\)

\(\Rightarrow IM=IN\)(cặp cạnh tương ứng bằng nhau)

\(\Rightarrow\)I là trung điểm của MN

\(\Rightarrowđpcm\)

11 tháng 7 2019

A B C D M I E N

a) Xét tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{NCE}\) ( đối đỉnh)

=> \(\widehat{ABC}=\widehat{NCE}\) hay \(\widehat{MBD}=\widehat{NCE}\)

Xét tam giác vuông MBD và tam giác vuông NCE có:

\(\widehat{MBD}=\widehat{NCE}\)( chứng minh trên)

CE=BD

=> Tam giác MBD= tam giác NCE

=> DM=EN

b) Gọi I là giao điểm của MN và BC

Xét tam giác vuông DMI và tam giác vuông ENI có:

DM=EN ( theo câu a)

\(\widehat{MID}=\widehat{NIE}\) ( đối đỉnh)

=> Tam giác DMI= Tam giác ENI

=> MI=NI

=> I là trung điểm MN

Vậy đường thẳng BC cắt MN tại trung điểm I của MN