Cho pt : :x2 -2x-17=0 , x1 ,x2 là 2 nghiệm của pt tính giá trị của |x1 -x2 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có: `\Delta' = b'^2-ac=(-1)^2-(-4)=5 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=-4):}`
Có: `T=x_1(x_1-2x_2)+x_2(x_2-2x_1)`
`=>T=x_1 ^2 - 2x_1.x_2+x_2 ^2 - 2x_1.x_2`
`=>T=(x_1+x_2)^2-6x_1.x_2`
`=>T=2^2-6(-4)=28`
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)
\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1+x_2-2x_1x_2\)
\(=-2-2.\left(-8\right)=14\)
cho PT 2x^2-3x-1=0. x1, x2 là 2 nghiệm của PT, không giải PT hãy tính A = x1^4 + x2^4. B = I x1-x2 I
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
hello m.n