Tính giá trị nhỏ nhất của biểu thức:
A = x4 + 4x2 + 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=4\)
\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)
Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)
Đáp án B.
Ta có
x ∈ − 2 ; 3 y ' = − 4 x 3 + 8 x = 0 ⇔ x = 0 x = ± 2
Tính
y − 2 = − 5 ; y 3 − 50 ; y 0 = − 5 ; y 2 = − 1 , y − 2 = − 1.
Đáp án C
Ta có:
y ' = 4 x 3 − 8 x = 4 x x 2 − 2 ⇒ y ' = 0 ⇔ x = 0 x = ± 2 .
Suy ra: y 0 = 3 , y 2 = − 1 , y 3 = 48 ⇒ min 0 ; 3 y = − 1.
\(A=3\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\forall x\)
Dấu "=" xảy ra
\(\Leftrightarrow3.\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow x=\dfrac{1}{2}\)
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)
A=x4+4x2+14
Ta có:x4\(\ge\)0;4x2\(\ge\)0
=>x4+4x2\(\ge\)0
=>x4+4x2+14\(\ge\)14
=>A\(\ge\)14
Dấu = khi x=0
Vậy MinA=14 khi x=0