K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a.

\(A=B\)

\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8\left(x+2\right)=0\)

\(\Leftrightarrow x=-2\left(ktm\right)\)

Vậy không có giá trị x thỏa mãn A=B

b.

\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)

\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{16}>0\)

\(\Leftrightarrow\dfrac{x}{2}>0\)

\(\Leftrightarrow x>0\)

 

 

29 tháng 8 2023

a) \(A=B\) khi

\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4=-16\)

\(\Leftrightarrow8x=-16\)

\(\Leftrightarrow x=\dfrac{-16}{8}\)

\(\Leftrightarrow x=-2\left(ktmdk\right)\)

b) \(A:B< 0\) khi:

\(\left(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}\right):\left(\dfrac{-16}{x^2-4}\right)< 0\)

\(\Leftrightarrow\left[\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\right]:\left[\dfrac{-16}{\left(x+2\right)\left(x-2\right)}\right]< 0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{-16}< 0\)

\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{-16}< 0\)

\(\Leftrightarrow\dfrac{8x}{-16}< 0\)

\(\Leftrightarrow\dfrac{x}{-2}< 0\)

Mà: -2 < 0

\(\Leftrightarrow x>0\)

So với đk:

Vậy: \(A:B< 0\) khi

\(x>0;x\ne2\)

a: A=B

=>A-B=0

=>\(\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)

=>x^2+4x+4-x^2+4x-4=-16

=>8x=-16

=>x=-2(loại)

b: A:B<0

=>\(\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)

=>\(\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)

=>\(\dfrac{-8x}{16}< 0\)

=>x>0

Kết hợp ĐKXĐ, ta được: x>0 và x<>2

9 tháng 1 2019

a, ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)

b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)

Vậy để P=2 <=> x=2

4 tháng 8 2021

còn cách làm khác không ạ?

 

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Đề bị lỗi công thức rồi bạn.