- A =1/6 + 1/12 + 1/15 + .............. + 1/380
- B =3/2 + 3/6 + 3/12 + 3/15 ............... + 3/(n-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{-5}{8}+\dfrac{7}{12}=\dfrac{-15}{24}+\dfrac{14}{24}=\dfrac{-1}{24}\)
b: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{11}{12}=\dfrac{9}{12}-\dfrac{10}{12}+\dfrac{11}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
c: \(=\dfrac{6}{36}-\dfrac{1}{36}=\dfrac{5}{36}\)
d: \(=\dfrac{5}{12}+\dfrac{5}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
e: \(=\dfrac{-8}{56}-\dfrac{7}{56}=\dfrac{-15}{56}\)
f: \(=\dfrac{-5}{15}+\dfrac{3}{25}=\dfrac{-25}{75}+\dfrac{9}{75}=\dfrac{-16}{75}\)
12) \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
13) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=3\sqrt{5}-1-2\sqrt{5}+3\)
\(=\sqrt{5}+2\)
Bài 1:
\(A=\dfrac{-1}{3}+1+\dfrac{1}{3}=1\)
\(B=\dfrac{2}{15}+\dfrac{5}{9}-\dfrac{6}{9}=\dfrac{2}{15}-\dfrac{1}{9}=\dfrac{18-15}{135}=\dfrac{3}{135}=\dfrac{1}{45}\)
\(C=\dfrac{-1}{5}+\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{-1}{5}-\dfrac{1}{2}=\dfrac{-7}{10}\)
Bài 2:
a: \(=\dfrac{1}{5}+\dfrac{1}{2}+\dfrac{2}{5}-\dfrac{3}{5}+\dfrac{2}{21}-\dfrac{10}{21}+\dfrac{3}{20}\)
\(=\left(\dfrac{1}{5}+\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{2}{21}-\dfrac{10}{21}\right)+\left(\dfrac{1}{2}+\dfrac{3}{20}\right)\)
\(=\dfrac{-8}{21}+\dfrac{13}{20}=\dfrac{113}{420}\)
b: \(B=\dfrac{21}{23}-\dfrac{21}{23}+\dfrac{125}{93}-\dfrac{125}{143}=\dfrac{6250}{13299}\)
Bài 3:
\(\dfrac{7}{3}-\dfrac{1}{2}-\left(-\dfrac{3}{70}\right)=\dfrac{7}{3}-\dfrac{1}{2}+\dfrac{3}{70}=\dfrac{490}{210}-\dfrac{105}{210}+\dfrac{9}{210}=\dfrac{394}{210}=\dfrac{197}{105}\)
\(\dfrac{5}{12}-\dfrac{3}{-16}+\dfrac{3}{4}=\dfrac{5}{12}+\dfrac{3}{16}+\dfrac{3}{4}=\dfrac{20}{48}+\dfrac{9}{48}+\dfrac{36}{48}=\dfrac{65}{48}\)
Bài 4:
\(\dfrac{3}{4}-x=1\)
\(\Rightarrow-x=1-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
\(x+4=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{5}-4\)
\(\Rightarrow x=-\dfrac{19}{5}\)
Vậy: \(x=-\dfrac{19}{5}\)
\(x-\dfrac{1}{5}=2\)
\(\Rightarrow x=2+\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{11}{5}\)
Vậy: \(x=\dfrac{11}{5}\)
\(x+\dfrac{5}{3}=\dfrac{1}{81}\)
\(\Rightarrow x=\dfrac{1}{81}-\dfrac{5}{3}\)
\(\Rightarrow x=-\dfrac{134}{81}\)
Vậy: \(x=-\dfrac{134}{81}\)
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha