Cho ∆MNP vuông tại M, kẻ đường cao MH (H∈NP) a) Chứng minh: ∆HNM∽∆MNP b) Cho biết MN=6cm, MP=8cm. Tính NP, MH, HN, HP c) Kẻ tia phân giác MD (D∈NP). Trong ∆MDN kẻ tiếp tia phân giác DE (E∈MN) trong ∆MDN kẻ tia phân giác DF (F∈MP) chứng minh: EM/EN×DN/DP×FP/FM=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
Xét tam giác HNM và tam giác NMP, có:
^N: chung
^NHM = ^ NMP = 90 độ
Vậy tam giác NHM đồng dạng tam giác NMP (g.g )
\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)
Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)
(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)
\(MH=\dfrac{12.16}{20}=9,6cm\)
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
Tự vẽ Hình
a;Xét tam giác MHN và tam giác MHP có
góc MHN = góc MHP(=90o)
MH:chung
MNMP(=5cm)
=> Tam giác MHN = tam giácMHP (ch-cgv)
=> HN=HP;góc NMH = góc PMH (t.ứng)
b;Vì NH+HP=NP
mà NH=PH
=> NH=PH=1/2 NP=1/2.8=4(cm)
\(\Delta MHN\)vuông tại H
Áp dụng định lí py-ta-go ta có
\(HM^2+HN^2=MN^2\)
\(\Rightarrow HM^2=MN^2-HN^2=5^2-4^2=9\)
\(\Rightarrow HM=\sqrt{9}=3\left(cm\right)\)
c, Tam giác HDE cân ????
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)