K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2014}}\)

\(D=\frac{2.2014}{\frac{2}{2}+\frac{1}{\frac{2.3}{2}}+...+\frac{1}{\frac{2015.2014}{2}}}\)

\(D=\frac{2.2014}{\frac{2}{2}+\frac{2}{2.3}+...+\frac{2}{2014.2015}}\)

\(D=\frac{2015}{\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}}\)

\(D=\frac{2014}{\frac{1}{2}+\frac{1}{2}-\frac{1}{2015}}\)

4 tháng 8 2018

\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}}\)

\(D=\frac{2.2014}{\frac{1}{\frac{\left(1+1\right).1}{2}}+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2014+1\right).2014}{2}}}\)

\(D=\frac{2.2014}{\frac{2}{1.2}+\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{2015.2014}}\)

\(D=\frac{2.2014}{2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)}\)

\(D=\frac{2014}{\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)}\)

\(D=\frac{2014}{\left(1-\frac{1}{2015}\right)}\)

\(D=\frac{2014}{\frac{2014}{2015}}\)

\(D=\frac{2014.2015}{2014}\)

\(D=2015\)

Tham khảo nhé~

16 tháng 3 2016

nhớ phải 4 k thì làm

17 tháng 3 2016

tớ cần gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

18 tháng 6 2017

=(-1/2) : (-2/3) :( -3/4) :...: (-49/50) 

= -1/2 . (-3/2) . (-4/3) . ... . (-50/49)

= -1/2.(-1/2) . (-50)

= - 1/100

18 tháng 6 2017

mik ko bik viết kiểu của bn nên khó nhìn, thông cảm nha

27 tháng 12 2017

\(bn\)\(xem\)\(lai\)\(giup\)\(mk\)\(cho\)\(\frac{x+522}{7}\)\(neu\)\(thay\)\(bang\)\(\frac{x+552}{7}\)\(thi\)\(dug\)\(hon\)

27 tháng 12 2017

thế thì bạn giải thử xem cô t ra đề thế mà ừ thì cứ cho là x + 552 cx đc

18 tháng 3 2020

\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)

\(4A=1-\frac{1}{3^{20}}\)

\(A=\frac{1-\frac{1}{3^{20}}}{4}\)

\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)

Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20

             1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)

              1/M=[(3^20-1)/8]-[(3^21-3)/8]

               1/M=[3^20-3^21+(-2)]/8

Bạn tự làm tiếp nhé

19 tháng 11 2018

bằng 1/123

19 tháng 11 2018

\(Taco\):

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right).......................\left(1-\frac{1}{1+2+3+.............+2018}\right)\)

\(A=\left(\frac{1+2}{1+2}-\frac{1}{1+2}\right).............\left(\frac{1+2+3+......+2018}{1+2+3+.......+2018}-\frac{1}{1+2+3+......+2018}\right)\)

\(A=\left(\frac{2}{1+2}\right)...........\left(\frac{2+3+.......+2018}{1+2+3+......+2018}\right)\)

\(\Rightarrow A+2017.\left(\frac{1}{3}\right).....\frac{2+3+.....+2018}{1+2+3+...+2018}=1.1.1......1=1\)

\(.................................\)