Tính $\frac{3^{10} .11 + 3^{10} . 5}{3^{9} . 2^{4} }$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}\)=\(\dfrac{3^{10}.\left(11+5\right)}{3^9.2^4}\)=\(\dfrac{3.16}{2^4}\)=\(\dfrac{3.2^4}{2^4}\)=3
...Chúc bạn hok tốt nhe...
1: =72/90+65/90=137/90
2: =24/56-77/56=-53/56
3: =-7/10+4/5=1/10
4: =15/100-4/100=11/100
5: =4/6-5/6=-1/6
6: =10/40-15/40-76/40=-81/40
7: =-9/10+7/18
=-81/90+35/90=-46/90=-23/45
8: =27/90-55/90=-28/90=-14/45
9: =36/60-50/60-35/60=-49/60
10: =-4/9+5/6-3/8
=-32/72+60/72-27/72
=1/72
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{5}{8}-\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
\(=\frac{3.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{5.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{3}{5}\)
\(=\frac{6}{5}\)
`[3^10 .11+3^10 .5]/[3^9 . 2^4]`
`=[3^9(3.11+3.5)]/[3^9 . 2^4]`
`=[33+15]/16=48/16=3`
`(3^10 .11 + 3^10 . 5)/(3^9 . 2^4)`.
`<=> (3^10 . (11+5))/(3^9. 2^4)`
`<=> (3^10 . 16)/(3^9. 2^4)`.
`<=> (3^10 . 2^4)/(3^9 . 2^4)`
`<=> 3.`