K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2015

2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)

\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)

21 tháng 12 2019

Đáp án: B

Δ=(-2)^2-4(m-3)

=4-4m+12=-4m+16

Để pt có hai nghiệm thì -4m+16>=0

=>-4m>=-16

=>m<=4

x1^2+x2^2-x1x2<7

=>(x1+x2)^2-3x1x2<7

=>2^2-3(m-3)<7

=>4-3m+9<7

=>-3m+13<7

=>-3m<-6

=>m>2

=>2<m<=4

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

NV
25 tháng 3 2022

\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a.

\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)

\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)

\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)

\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)

\(P_{min}=32\) khi \(m=-3\)

b.

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)

Trừ vế cho vế:

\(x_1+x_2-x_1x_2=-8\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

5 tháng 7 2023

\(\Delta=\left(m+1\right)^2-4.1.2=\left(m+1\right)^2-8\)

Để PT có 2 nghiệm thì:

\(\Delta\ge0\Leftrightarrow\left(m+1\right)^2-8\ge0\\ \Leftrightarrow\left(m+1\right)^2\ge8\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m+1\right)\\x_1x_2=2\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2.2=\left(m+1\right)^2-4\)

Mà \(\left(m+1\right)^2\ge8\) nên \(\left(m+1\right)^2-4\ge4\)

\(\Rightarrow min_{x_1^2+x_2^2}=4\) (dấu bằng xảy ra)

\(\Leftrightarrow\left(m+1\right)^2=8\)

\(\Leftrightarrow m^2+2m+1=8\\\Leftrightarrow m^2+2m-7=0 \)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)