Tìm x để:
a. x>2x
b. a+x<a
c. x3<x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) choA(x) = 0
\(=>-18+2x=0\)
\(=>2x=18=>x=9\)
b) cho B(x) = 0
\(=>\left(x+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a) \(12+x+\left(-5\right)=-18-2x\)
\(\Rightarrow12+x-5=-18-2x\)
\(\Rightarrow x+7+18+2x=0\)
\(\Rightarrow3x=-25\)
\(\Rightarrow x=-\dfrac{25}{3}\)
b) \(\left(-14\right)-x+\left(-15\right)=-10+\left(4-2x\right)\)
\(\Rightarrow-14-x-15=-10+4-2x\)
\(\Rightarrow-x-29=-2x-6\)
\(\Rightarrow-x+2x=-6+29\)
\(\Rightarrow x=23\)
c) \(x-\left(-19\right)-\left(-11\right)=-\left(3x+40\right)\)
\(\Rightarrow x+19+11=-3x-40\)
\(\Rightarrow x+30=-3x-40\)
\(\Rightarrow x+3x=-40-30\)
\(\Rightarrow4x=-70\)
\(\Rightarrow x=-\dfrac{35}{2}\)
a)
A=0
\(x\left(x-\dfrac{4}{9}\right)=0\)
x=0 hoặc x-4/9=0
x=0 hoặc x=4/9
b)
A>0
\(x\left(x-\dfrac{4}{9}\right)>0\)
TH1
x>0 và x-4/9 >0
x>0 và x>4/9
TH2
x<0 và x-4/9<0
x<0 và x<4/9
c)
A<0
\(x\left(x-\dfrac{4}{9}\right)< 0\)
TH1
x<0 và x-4/9>0
x<0 và x>4/9
TH2
x>0 và x-4/9 <0
x>0 và x<4/9
\(a,\Rightarrow\left[{}\begin{matrix}x-1=2x\\1-x=2x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x+x-2=2\left(x\ge2\right)\\x+2-x=2\left(0\le x< 2\right)\\-x+2-x=2\left(x< 0\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(x\ge2\right)\left(tm\right)\\x=0\left(0\le x< 2\right)\left(tm\right)\\x=0\left(x< 0\right)\left(ktm\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a: Ta có: \(\left|x-1\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x\left(x\ge1\right)\\x-1=-2x\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
a) \(6x^2-2x=2x\left(3x-1\right)\)
\(2x\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{0;\dfrac{1}{3}\right\}\)
b) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)
\(\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-3;-2\right\}\)
\(p=\sqrt{x^2-2xa+a^2}+\sqrt{x^2-2xb+b^2}\)
\(=\sqrt{\left(x-a\right)^2}+\sqrt{\left(x-b\right)^2}\)
\(=\left|x-a\right|+\left|x-b\right|\)
\(=\left|x-a\right|+\left|b-x\right|\ge\left|x-a+b-x\right|=\left|b-a\right|\)
Dấu \(=\)khi \(\left(x-a\right)\left(b-x\right)\ge0\).
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(A=\dfrac{x-3}{x-5}\)
\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)
\(A=1+\dfrac{2}{x-5}\)
Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.
Do đó: \(x-5=-1\Rightarrow x=4\)
Vậy \(x=4\) thì A đạt GTNN.
a: x=2
=>a-5=2a
=>-a=5
=.a=-5
b: x nguyên
=>-5 chia hết cho a
=>a thuộc {1;-1;5;-5}
c: x<0
=>(a-5)/a<0
=>0<a<5