K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
$x^3-4x<0$

$\Leftrightarrow x(x^2-4)<0$

Xét 2 TH:

TH1: \(\left\{\begin{matrix} x<0\\ x^2-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x<0\\ (x-2)(x+2)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x<0\\ \text{x>2 hoặc x< -2}\end{matrix}\right.\)

\(\Leftrightarrow x< -2\)

TH2: \(\left\{\begin{matrix} x>0\\ x^2-4<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ (x-2)(x+2)<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ -2< x< 2\end{matrix}\right.\)

\(\Rightarrow 0< x< 2\)

Vậy tập nghiệm của BPT là $(0;2)\cup (-\infty; -2)$

8 tháng 5 2022

\(x^3-4x< 0\Leftrightarrow x\left(x^2-4\right)< 0\)

Có 2 trường hợp xảy ra.

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-4< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2< 4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-2< x< 2\end{matrix}\right.\Leftrightarrow0< x< 2\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x^2>4\end{matrix}\right.\) (*)

Ta có \(x^2>4\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\), vậy (*) \(\Leftrightarrow x< -2\)

 Vậy tập nghiệm của BPT đã cho là \(x\) sao cho \(0< x< 2\) hoặc \(x< -2\)