So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha
AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA
ta thấy 2 phân số 2017/2018 và 2019/2020 đều là phân số nhỏ hơn 1 nên 1 trong 2 phân số sẽ có 1 phân số nhỏ nhất.
phần này bạn tự so sánh,2017/2018<2019/2020
tiếp theo bạn so sánh 2 phân số còn lại , 2018/2017>2020/2019
vậy 2017/2018<2019/2020<2018/2017<2020/2019
chúc bạn học tốt
`a,`
`5/6=1-1/6`
`7/8=1-1/8`
Mà `1/6>1/8 -> 5/6<7/8`
`b,`
`9/5=(9 \times 2)/(5 \times 2)=18/10`
`3/2=(3 \times 5)/(2 \times 5)=15/10`
`18/10 > 15/10 -> 9/5 > 3/2`
`c,`
`2017/2018 = 1-1/2018`
`2019/2020=1-1/2020`
`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`
`d,`
`2018/2017 = 1+1/2017`
`2020/2019 = 1+1/2019`
`1/2017 > 1/2019 -> 2018/2017>2020/2019`
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
Ta có:
\(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2018}{2019}=\frac{1}{2019};1-\frac{2019}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2018}>\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2018}{2019}< \frac{2019}{2020}\)
2017/2018 = (2018-1)/2018 = 1-1/2018
2018/2019 = (2019-1)/2019 = 1 - 1/2019
2019/2020 = (2020-1)/2020 = 1 - 1/2020
Có 1/2018 > 1/2019 > 1/2020 => 2017/2018 < 2018/2019 < 2019/2020