cho hinh vuong ABCD diem E thuoc canh CD . Tia phan giac cua goc ABE cat AD o K . chung minh rang AK+CE =BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
▲BDE có
N là trung điểm DE (gt)
I là trung điểm BE (gt)
⇒NI là đường trung bình của tam giác BDE
⇒NI = 1/2 BD (1)
▲DEC có
K là trung điểm CD (gt)
N là trung điểm DE (gt)
⇒ NK là đường trung bình
⇒ NK = 1/2 CE (2)
▲BEC có
I là trung điểm BE (gt)
Mlà trung điểm BC (gt)
⇒MI là đường trung bình
⇒ MI = 1/2 CE (3) ,MI//CE
▲BDC có
K là trung điểm CD (gt)
M là trung điểm BC (gt)
⇒ MK là đường trung bình
⇒ MK = 1/2 BD (4) , MK//BD
Có (1)(2)(3)và (4) với BD=CE (gt)
⇒ NI=NK=MK=MI
⇒ MINK là hình thoi
b)
Có MK//BD (cmt)
⇒ \(\widehat {KMN}=\widehat {BHM} \) ( 2 góc SLT)
Có MI//CE (cmt)
⇒ \(\widehat {IMN}=\widehat {CGM}\) ( 2 góc SLT)
Có \(\widehat {KMN}=\widehat {IMN}\) ( MINK là hình thoi)
⇒ \(\widehat {BHM}=\widehat {CGM}\)
▲HAG có
\(\widehat {HAG}+\widehat {AHG}+\widehat {AGH} =180 độ\)
mà \(\widehat {CGM}=\widehat {AGH}\)
⇒\(\widehat {HAG}+2\widehat {CGM}\) = 180 độ
⇒ \(2\widehat {CGM}= 180 độ - \widehat {HAG}\)
Có \(\widehat {HAG}+\widehat {BAC}\) = 180 độ (2 góc kề bù)
⇒\(\widehat {BAC}= 180 độ -\widehat {HAG}\)
⇒ \(2\widehat {CGM} = \widehat {BAC}\)
mà At là tia phân giác góc BAC
⇒ \(2\widehat {CGM} = 2\widehat {CAt}\)
⇒ \(\widehat {CGM } = \widehat {CAt}\)
⇒ GM//At ( 2 góc Đồng vị)
Có MN⊥IK ( 2 đường chéo của hình thoi MINK) hay GM ⊥IK
⇒ At⊥IK
Gọi I là giao điểm của đoạn thẳng AD và BE
Xét △ ABI và △ AEI có:
AB =AE ( gt )
A1=A2 ( gt )
AI là cạnh chung
⇒ △ ABI = △ AEI ( c.g.c)
⇒ góc AIB = góc AIE ( cạnh tương ứng )
Mà góc AIB + góc AIE = 180 độ ⇒ góc AIE = Góc AIE = 90 độ
⇒AD ⊥ BE
xét tam giác ADB và tam giác ADEcó
AB=AE(GT)
GÓC BAD = GÓC DAE ( AD LÀ TIA PHÂN GIÁC CỦA GÓC ABC )
AD LÀ CẠNH CHUNG
TỪ 4 Ý CÙA NÊU
SUY RA : TAM GIÁC ADB =TAM GIÁC ADE
SUY RA ; GÓC BDA = GÓC ADE
MÀ GÓC BDA + GÓC ADE = 180 ĐỘ ( KỀ BÙ )
SUY RA : GÓC BDA = GÓC ADE = 180 ĐỘ /2 = 90 ĐỘ
VẬY BE VUÔNG GÓC VỚI AD