K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Ta thấy với x = 0 và x = 1 thì E không phải số nguyên nên ta xét x > 1

Ta chứng minh

\(\sqrt{36x^2+10x+3}< \sqrt{1024x^2+1024x+256}\)

Và \(36x^2+10x+3>16x^2+8x+1\)Ta thấy rằng với x > 1 thì cả 2 cái trên đều đúng

Từ đó ta có

\(\sqrt{x^2+\sqrt{4x^2+\sqrt{16x^2+8x+1}}}< E< \sqrt{x^2+\sqrt{16x^2+\sqrt{1024x^2+1024x+256}}}\)

\(\Leftrightarrow\sqrt{x^2+\sqrt{4x^2+4x+1}}< E< \sqrt{x^2+\sqrt{16x^2+32x+16}}\)

\(\Leftrightarrow\sqrt{x^2+2x+1}< E< \sqrt{x^2+4x+4}\)

\(\Leftrightarrow x+1< E< x+2\)

Vì E nằm giữa hai số nguyên liên tiếp nên E không phải là số nguyên

23 tháng 10 2016

mk sai đề bài

NV
15 tháng 5 2019

Giả sử D là số nguyên

\(\Rightarrow y=x^2+\sqrt{4x^2+\sqrt{36x^2+10x+3}}\) chính phương

\(x\) tự nhiên \(\Rightarrow z=4x^2+\sqrt{36x^2+10x+3}\) chính phương

\(\Rightarrow36x^2+10x+3\) chính phương

Đặt \(36x^2+10x+3=k^2\Leftrightarrow\left(36x+5\right)^2+83=36k^2\)

\(\Leftrightarrow\left(6k-36x-5\right)\left(6k+36x+5\right)=83\)

Giải pt nghiệm nguyên trên ta được duy nhất 1 nghiệm tự nhiên \(x=1\)

Thế \(x=1\) vào \(z\) ta được \(z=4+7=11\) không phải số chính phương (mâu thuẫn giả thiết)

Vậy với mọi x tự nhiên thì D không phải số nguyên

1 tháng 8 2021

ĐKXĐ:\(x\ge0\)

Để \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) nhận giá trị nguyên thì \(2\sqrt{x}⋮\sqrt{x}+3\)

                                                      \(\Leftrightarrow2\left(\sqrt{x}+3\right)-6⋮\sqrt{x}+3\)

                                                     \(\Leftrightarrow-6⋮\sqrt{x}+3hay\sqrt{x}+3\inƯ_{\left(-6\right)}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)

TH1.\(\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(tmĐKXĐ\right)\)

TH2.\(\sqrt{x}+3=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tmĐKXĐ\right)\)

Vậy,x={0;9}                                                                                                                                                                                                                                                                                               

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$

$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$

$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$

Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên 

$\Rightarrow 3M-2\vdots 2M-1$

$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$

$\Rightarrow 2M-1\in\left\{\pm 1\right\}$

$\Rightarrow M=0;1$

$\Leftrightarrow x=4; 1$ (đều tm)

5 tháng 11 2016

tách 10 + 6 căn 3 = 1 + 3 căn 3 +3 căn 3 + 9 = ( căn 3 -1)

   6 + 2 căn 5 = ( căn 5+1)2

sau đó thay vô là được

5 tháng 11 2016

Ta có

\(\frac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=2\)

Thế vào ta được

P = (23 - 4×2 - 1)2012 = 1