K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

26 tháng 7 2018

31 tháng 1 2019

21 tháng 11 2019

16 tháng 4 2017

25 tháng 4 2019

Chọn đáp án D

Ta có: HD là hình chiếu của SD lên mặt phẳng (ABCD).

Góc giữa SD và mặt phẳng (ABCD) là góc  S D H ^   =   60 °

Kẻ HK ⊥ CD suy ra 

Góc giữa hai mặt phẳng (SCD) và (ABCD) là góc  S K H ^   =   α

Ta có: 

Mặt khác: HK//AD 

Vậy: 

20 tháng 1 2017

a: AC vuông góc BD

AC vuông góc SO

=>AC vuông góc (SBD)

=>SB vuông góc AC

mà AC vuông góc BD

nên AC vuông góc (SBD)

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB

nên OI//AB

=>OI vuông góc BC

BC vuông góc OI

BC vuông góc SO

=>BC vuông góc (SOI)

=>(SBC) vuông góc (SOI)