K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

A B I C F D E 1 1 2 2 1 4 2 3

Vẽ phân giác\(\widehat{BIC}\) cắt BC tại F(1).Ta có :\(\widehat{B_2}=\frac{\widehat{ABC}}{2};\widehat{C_2}=\frac{\widehat{ACB}}{2}\)(BD,CE lần lượt là phân giác của\(\widehat{ABC},\widehat{ACB}\): gt)

\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{B_2}+\widehat{C_2}\right)=180^0-\frac{\widehat{ABC}+\widehat{ACB}}{2}=180^0-\frac{180^0-\widehat{A}}{2}=120^0\)

\(\Rightarrow\widehat{I_1}=\widehat{I_4}=180^0-\widehat{BIC}=60^0\)(vì kề bù) ;\(\widehat{I_2}=\widehat{I_3}=\frac{\widehat{BIC}}{2}=60^0\)(do (1))

\(\Rightarrow\Delta IBE=\Delta IBF\left(g.c.g\right);\Delta ICF=\Delta ICD\left(g.c.g\right)\)=> IE = IF (2 cạnh tương ứng) ; IF = ID (2 cạnh tương ứng)

=> IE = ID

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

a: Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)

\(\Leftrightarrow\widehat{BIC}=120^0\)

Kẻ IG là phân giác của góc BIC

góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ

=>góc BIC=120 độ

=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ

Xét ΔIEB và ΔIGB có

góc EIB=góc GIB

IB chung

góc IBE=góc IBG

Do đó: ΔIEB=ΔIGB

Suy ra: IE=IG(1)

Xét ΔIGC và ΔIDC có

góc GIC=góc DIC

IC chung

góc GIC=góc DIC

Do đó: ΔIGC=ΔIDC

Suy ra: IG=ID

=>ID=IE

5 tháng 12 2017

A B C D E I F
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.

20 tháng 1 2021

cái chổ xét tam giác ghi lí do ra đc ko

 

19 tháng 11 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC, ta có:

∠A +∠B +∠C = 180o (tổng ba góc trong tam giác)

⇒∠B +∠C = 180 - ∠A = 180 - 60 = 120o

+) Vì BD là tia phân giác của ABC nên: ∠(B1 ) = ∠(B2) = 1/2 ∠B

Vì CE là tia phân giác của góc ACB nên: ∠(C1 ) = ∠(C2) = 1/2 ∠ C

Do đó:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔBIC, ta có:

∠(BIC) = 180o(∠(B1 ) + ∠(C1) = 180o - 60o = 120o

Kẻ tia phân giác ∠(BIC) cắt cạnh BC tại K

Suy ra: ∠(I2 ) = ∠(I3 ) = 1/2 ∠(BIC) = 60o

Ta có: ∠(I1 ) + ∠(BIC) = 180o (hai góc kề bù)

⇒ ∠(I1 ) = 180o-∠(BIC) = 180o - 120o = 60o

∠(I4 ) = ∠(I1) = 60o(vì hai góc đối đỉnh)

Xét ΔBIE và ΔBIK, ta có

∠(B2) = ∠(B1) (vì BD là tia phân giác của góc ABC)

BI cạnhchung

∠(I1) = ∠(I2) = 60o

Suy ra: ΔBIE = ΔBIK(g.c.g)

IK = IE (hai cạnh tương ứng) (1)

Xét ΔCIK và ΔCID, ta có

∠(C1) = ∠(C2) ( vì CE là tia phân giác của góc ACB).

CI cạnh chung

∠(I3) = ∠(I4) = 60o

Suy ra: ΔCIK = ΔCID(g.c.g)

IK = ID (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: IE = ID

1 tháng 1 2021

thanks bn nhìu

9 tháng 12 2021

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)

15 tháng 9 2017

Kẻ IG là phân giác của góc BIC

góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ

=>góc BIC=120 độ

=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ

Xét ΔIEB và ΔIGB có

góc EIB=góc GIB

IB chung

góc IBE=góc IBG

Do đó: ΔIEB=ΔIGB

Suy ra: IE=IG(1)

Xét ΔIGC và ΔIDC có

góc GIC=góc DIC

IC chung

góc GIC=góc DIC

Do đó: ΔIGC=ΔIDC

Suy ra: IG=ID

=>ID=IE

Kẻ IG là phân giác của góc BIC

góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2x120=60 độ

=>góc BIC=120 độ

=>góc EIB=góc BIG=góc CIG=góc DIC=60 độ

Xét ΔIEB và ΔIGB có

góc EIB=góc GIB

IB chung

góc IBE=góc IBG

Do đó: ΔIEB=ΔIGB

Suy ra: IE=IG(1)

Xét ΔIGC và ΔIDC có

góc GIC=góc DIC

IC chung

góc GIC=góc DIC

Do đó: ΔIGC=ΔIDC

Suy ra: IG=ID

=>ID=IE

=)))))))))))))))))))))