Bài 1:1. Cho biểu thức \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)a, Rút gọn Ab, Tìm \(x\in Z\)để A có giá trị nguyên2. Biết \(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)Tính \(a-b\)Bài 2:1. Cho x, y, a, b là những số thực thỏa mãn: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)và \(x^2+y^2=1\)Chứng minh: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1008}}=\frac{2}{\left(a+b\right)^{1009}}\)2. Tìm các hằng số a,b sao cho đa...
Đọc tiếp
Bài 1:
1. Cho biểu thức \(A=\frac{1}{x-2}+\frac{x^2-x-2}{x^2-7x+10}-\frac{2x-4}{x-5}\)
a, Rút gọn A
b, Tìm \(x\in Z\)để A có giá trị nguyên
2. Biết \(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)Tính \(a-b\)
Bài 2:
1. Cho x, y, a, b là những số thực thỏa mãn: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)và \(x^2+y^2=1\)
Chứng minh: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1008}}=\frac{2}{\left(a+b\right)^{1009}}\)
2. Tìm các hằng số a,b sao cho đa thức \(f\left(x\right)=x^4-x^3-3x^2+ax+b\) chia cho đa thức \(x^2-x-2\)dư \(2x-3\)
Bài 3: Cho đa thức \(A=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
a, Phân tích A thành nhân tử
b, Chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A-3xyz chia hết cho 6
Bài 1 :
a) \(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)
b) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)