T ìm x ,y
a ) x * ( y + 2 ) =5
b ) ( 2x + 1 ) * y = 12
c ) (x - 1 ) * ( y + 1 ) = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+1)2 \(\ge0\)\(\ge\) với mọi x
=> 5(x+1)2 \(\ge0\) với mọi
|y-3| \(\ge0\) với mọi y
=>5(x+1)2+|y-3| \(\ge0\) với mọi x,y
=>5(x+1)2+|y-3|-1 \(\ge-1\)
với mọi x,y
=> GTNN của biểu thức trên là -1 tại x=-1, y =3
Bài 1:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x-26=0\)
\(\Leftrightarrow-13\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Bài 2:
a) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
b) \(\left(2x-1\right)\left(2x+1\right)\left(1-5x\right)\)
\(=\left(4x^2-1\right)\left(1-5x\right)\)
\(=4x^2-20x^3-1+5x\)
a) \(\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=\left(2x+y\right)^2-\left(2x\right)^2+y^2+xy-y^2\)
\(=\left(2x+y+2x\right)\left(2x+y-2x\right)+xy\)
\(=\left(4x+y\right)y+xy\)
\(=\left[4\left(-2\right)+3\right].3+\left(-2\right).3\)
\(=\left(-8+3\right).3+1\)
\(=-15+1\)
\(=-14\)
a: \(A\ge-5\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-1
1) Tìm x và y biết
a) (2x+1)2 + y2 = 0
Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)
Để \(\left(2x+1\right)^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)
b) x2 + 2x + 1 + (y-1)2 = 0
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)
Lập luận tương tự câu a ,ta có :
\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) x2 - 2x + y2 + 4y + 5 = 0
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Lập luận tương tự 2 câu trên
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a, \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)
b, \(\left(a^3-2a^2+a-1\right)\left(a-5\right)\)
\(=a^4-2a^3+a^2-a-5a^3+10a^2-5a+5\)
\(=a^4-7a^3+11a^2-6a+5\)
c, \(\left(x^2-2x+y^2\right)\left(x-y\right)-3xy\left(y-x\right)\)
\(=x^3-2x^2+xy^2-x^2y+2xy-y^3-3xy^2+3x^2y\)
\(=x^3-2x^2-2xy^2-2x^2y+2xy-y^3\)
Bài 2:
a, \(\left(12x-5\right)\left(x+1\right)+\left(6x-2\right)\left(3-2x\right)=5\)
\(\Rightarrow12x^2+12x-5x-5+18x-12x^2-6+4x=5\)
\(\Rightarrow29x=5+5+6\)
\(\Rightarrow29x=16\Rightarrow x=\dfrac{16}{29}\)
b, \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7=-8\)
\(\Rightarrow2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
\(\Rightarrow0x=-8\Rightarrow x\in\varnothing\)
Chúc bạn học tốt!!!
Bài 1:
a) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3+x-2\)
b) \(\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)\)
\(=\dfrac{1}{2}x^2y^2\cdot\left(4x^2-y^2\right)\)
\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)
Bài 2:
a) \(2x\cdot\left(x-5\right)-x\left(2x+3\right)=26\)
\(\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\)
\(\Rightarrow x=2\)
b) \(\left(3y^2-y+1\right)\cdot\left(y-1\right)+y^2\cdot\left(4-3y\right)-\dfrac{5}{2}=0\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3-\dfrac{5}{2}=0\)
\(\Rightarrow2y+\dfrac{7}{5}=0\)
\(\Rightarrow2y=-1,4\)
\(\Rightarrow y=-0,7\)
c) \(2x^2+3\left(x-1\right)\cdot\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow5x^2-5x^2-5x=3\)
\(\Rightarrow-5x=3\)
\(\Rightarrow x=0,6\)
a, \(2x\left(x-5\right)-x\left(2x+3\right)=25\)
\(\Rightarrow2x^2-10x-2x^2-3x=25\)
\(\Rightarrow-13x=25\Rightarrow x=\dfrac{-25}{13}\)
b, \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\dfrac{5}{2}\)
\(\Rightarrow3y^3-y^2+y-3y^2+y-1+4y^2-3y^3=\dfrac{5}{2}\)
\(\Rightarrow2y-1=\dfrac{5}{2}\Rightarrow2y=\dfrac{7}{2}\Rightarrow y=\dfrac{7}{4}\)
c, \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2+x-x-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow-5x=3\Rightarrow x=\dfrac{-3}{5}\)
a, x(y + 2) = 5
=> x; y + 2 thuộc Ư(5) = {-1; 1; -5; 5}
ta có bảng :
vậy_
b, c tương tự