vẽ 10 đường thẳng cùng đi qua điểm O. tính số góc đỉnh O tạo thành.
giúp mình với mình đang cần gấp^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Ta có : xOz + zOy = 180 độ( kề bù)
hay: xOz +47độ= 180 độ
xOz = 180 độ - 47 độ = 133độ.
2)
- Hai góc vuông không đối đỉnh là : góc xAy và góc x'Ax.
3)
4)
- các góc bằng nhau là :O1=O4 ; O2 = O5 ; O3 = z'Ox' ( đối đỉnh)
( viết số vào chân bên phải của góc và viết đúng kí hiệu góc , độ nka)
Vẽ các tia đỉnh O đi qua n điểm sẽ có n tia
Số góc đỉnh O tạo thành là: \(C^2_n\)(góc)
a)2 đường thẳng tạo được 8 góc tính cả góc bẹt
⇒ 50 đường thẳng tạo được số góc là:
25.8=200(góc)
b) 2 góc tạo thành 1 cặp góc đối đỉnh tính cả góc bẹt
⇒ có tất cả số cặp góc đối đỉnh là:
200:2=100(cặp)
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)