cho 2a^2+2b^2+4c^2+3 ab+ac+2bc=1,5. Tim GTNN, GTLN cua a+b+c+2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}\left(a+b\right)^2}=\frac{\sqrt{5}\left(a+b\right)}{2}\)
Tương tự:\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}\left(b+c\right)}{2}\);\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}\left(c+a\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:\(VT\ge\frac{\sqrt{5}\left(2a+2b+2c\right)}{2}=\sqrt{5}\left(a+b+c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(4+1\right)\left[\left(a+b\right)^2+b^2\right]}\ge\dfrac{1}{\sqrt{5}}\left(2a+2b+b\right)=\dfrac{1}{\sqrt{5}}\left(2a+3b\right)\)
Tương tự:
\(\sqrt{b^2+2bc+2c^2}\ge\dfrac{1}{\sqrt{5}}\left(2b+3c\right)\)
\(\sqrt{c^2+2ca+2a^2}\ge\dfrac{1}{\sqrt{5}}\left(2c+3a\right)\)
Cộng vế:
\(P\ge\dfrac{1}{\sqrt{5}}\left(5a+5b+5c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Nguyễn Việt Lâm Giáo viên, thầy ơi cho em hỏi làm thế này rồi làm tiếp có ra như trên được không ạ?? Em làm kiểu này không ra như trên!!!
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(1+4\right).[\left(a+b\right)^2+b^2]}\ge\dfrac{1}{\sqrt{5}}.\left(a+b+2b\right)=\dfrac{1}{\sqrt{5}}.\left(a+3b\right)\)
chịu nhằng quá giải ko ra