Giải phương trình \(\dfrac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\ne0;x\ge-\dfrac{1}{3}\)
Pt \(\Leftrightarrow12x^2-3x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow16x^2=4x^2+4x\sqrt{3x+1}+3x+1\)
\(\Leftrightarrow16x^2=\left(2x+\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=2x+\sqrt{3x+1}\\4x=-\left(2x+\sqrt{3x+1}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{3x+1}\left(1\right)\\6x=-\sqrt{3x+1}\left(2\right)\end{matrix}\right.\)
TH1 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(4x+1\right)=0\end{matrix}\right.\)\(\Rightarrow x=1\) (thỏa)
TH2\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\36x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{24}\\x=\dfrac{1-\sqrt{17}}{24}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{17}}{24}\)(tm)
Vậy...
Lời giải:
ĐKXĐ: $x\ge \frac{-1}{3}; x\neq 0$
PT \(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\sqrt{3x+1}-2\)
\(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\frac{3(x-1)}{\sqrt{3x+1}+2}\)
\(\Leftrightarrow (x-1)(3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2})=0\)
Nếu $x-1=0\Leftrightarrow x=1$ (tm)
Nếu $3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2}=0$
$\Leftrightarrow 12x\sqrt{3x+1}+12x+\sqrt{3x+1}+2=0$
$\Leftrightarrow \sqrt{3x+1}(12x+1)=-(12x+2)$
Từ đây suy ra $x\leq \frac{-1}{6}$
Bình phương 2 vế:
$(3x+1)(12x+1)^2=[(12x+1)+1]^2$
$\Leftrightarrow 3x(12x+1)^2=2(12x+1)+1$
$\Leftrightarrow 144x^3+24x^2-7x-1=0$
$\Leftrightarrow (4x+1)(36x^2-3x-1)=0$
Vì $x\leq \frac{-1}{6}$ nên $x=\frac{1-\sqrt{17}}{24}$
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(\left\{{}\begin{matrix}\dfrac{6}{3x-2}-2\sqrt{1-y}=1\\\dfrac{2}{3x-2}+\sqrt{1-y}=2\end{matrix}\right.\) (x \(\ne\) \(\dfrac{2}{3}\); y \(\le\) 1)
Đặt \(\dfrac{1}{3x-2}=a\); \(\sqrt{1-y}=b\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-2b=1\\2a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-2b=1\\4a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}10a=5\\4a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\4\cdot\dfrac{1}{2}+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{3x-2}=2\\\sqrt{1-y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\left(3x-2\right)=1\\1-y=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=0\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
Lời giải:
ĐKXĐ: $x\geq \frac{-1}{3}$
PT $\Leftrightarrow \frac{x}{\sqrt{x+2}}=\sqrt{3x+1}-\sqrt{x+1}$
$\Leftrightarrow \frac{x}{\sqrt{x+2}}=\frac{2x}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow x\left(\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}\right)=0$
Xét các TH:
TH1: $x=0$ (thỏa mãn)
TH2: $\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow \sqrt{3x+1}+\sqrt{x+1}=2\sqrt{x+2}$
$\Rightarrow 4x+2+2\sqrt{(3x+1)(x+1)}=4(x+2)$
$\Leftrightarrow \sqrt{(3x+1)(x+1)}=3$
$\Rightarrow (3x+1)(x+1)=9$
$\Leftrightarrow 3x^2+4x-8=0$
$\Rightarrow x=\frac{-2\pm 2\sqrt{7}}{3}$
Kết hợp với ĐKXĐ suy ra $x=\frac{-2+2\sqrt{7}}{3}$
Vậy............
Đặt \(\sqrt{3x+1}=a\)
\(\Rightarrow\frac{a^2-1}{\sqrt{a^2+9}}=a-1\)
\(\Leftrightarrow\left(a-1\right)\left(\frac{a+1}{\sqrt{a^2+9}}-1\right)=0\)