Giúp mình 2 câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.Lan’s mother is making her a dress.
A dress is being made by Lan's mother
5.We saw Mrs. Quyen leave her house at 9 o’clock.
Mrs Quyen was seen to leave her house at 9 o'clock
6.Mr. Lam must finish this work before June.
This work must be finished by Mr Lam before June
7.My parents are going to buy a new TV tomorrow.
A new TV is going to be bought by my parents tomorrow
8.We haven’t seen Peter yet.
Peter hasn't been seen yet
9.Nam and Ba are painting the fence.
The fence is being painted by Nam and Ba
10.Hoa reads a story book after dinner.
A story book is read by Hoa after dinner
const fi='kt.txt';
fo='kq.out';
var f1,f2:text;
s:string;
i,dem,d:integer;
begin
assign(f1,fi); reset(f1);
assign(f2,fo); rewrite(f2);
readln(f1,s);
d:=length(s);
dem:=0;
for i:=1 to d do
if s[i]='e' then inc(dem);
writeln(f2,dem);
close(f1);
close(f2);
end.
30B 31B 32D 33D 34C 35B 36B 37C 38B 39A 40D 41D 42A 43D 44D 45A 46C 47B 48C 49B 50C 51C 52A 53D 54B 55C 56A 57C 58A 59D 60B
trả lời:
1996 x 1997 + 1998 x 3 + 1994 / 1997 x 1999 - 1997 x 1997
= 1996 x 1997 + ( 1997 + 1 x 3 ) + 1994 / 1997 x 1999 - 1997 x 1997
= 1996 x 1998 + 1 x 3 + 1994 / 1997 x 1999 - 1997 x 1997
= 3988008 + 3 + 1994 / 1997 x 1999 - 1997 x 1997
= 3990005 / 1997 x 1999 - 1997 x 1997
= 3990005 / ( 1999 - 1997 ) x 1997
= 3990005 / 3994
Bài làm:
\(\frac{1997.1996+1998.3+1944}{1994.1999-1997.1994}\)
\(=\frac{1997.1996+\left(1997+1\right).3+1994}{1994.\left(1999-1997\right)}\)
\(=\frac{1997.1996+1997.3+3+1994}{1994.2}\)
\(=\frac{1997.\left(1996+3\right)+1997}{1994.2}\)
\(=\frac{1997.\left(1999+1\right)}{1994.2}\)
\(=\frac{1997.2000}{1994.2}\)
\(=\frac{998500}{997}\)
Hc tốt!
a:
Sửa đề: 19/17-19/49+19/131
\(=\dfrac{19\left(\dfrac{1}{17}-\dfrac{1}{49}-\dfrac{1}{131}\right)}{3\left(\dfrac{1}{17}-\dfrac{1}{49}-\dfrac{1}{131}\right)}=\dfrac{19}{3}\)
b: \(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\left(1+\dfrac{2019}{2}\right)+\left(1+\dfrac{2018}{3}\right)+...+\left(1+\dfrac{1}{2020}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)