B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.100^2
đúng mình sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1.2+2.3+3.4+4.5+...+98.99+99.100
suy ra :3S=1.2.3+2.3.3+3.4.3+4.5.3+...+98.99.3+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+98.99.(100-97)+99.100.(101-98)
3S=1.2.3.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+98.99.100-97.98.99+99.100.101-98.99.100
3S=99.100.101
Suy ra :S=99.100.10:3=333300
vậy S=333300
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)
Gọi tổng trên là;A
A=9+99+999+........+999...9(20 số 9)
A=(10-1)+(100-1)+.......+(100...0(20 số 0)-1)
A=10+102+103+........+1020-(1+1+.........+1) 20 số 1
10A=102+103+.........+1021-200
10A-A=1021-10-200+20=1021-190
A=\(\frac{10^{21}-190}{9}\)
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
A= 1-2+3-4+4-5+...+99-100
A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )
A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )
A = ( - 1 ) . 50
A = - 50
B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
=) B = (99.100.101) :3
B = 333300
Vậy B= 333300
A= 1-2+3-4+4-5+...+99-100
A = (1-2) + (3-4) + (4-5) + ... + (99-100)
A = (-1) + (-1) + (-1) + ...+ (-1)
A = (-1).50
A = 1
S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰
2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)
= 2¹⁰¹ - 1
------------
S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2
3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
S = 100 . 101 . 102 : 3
= 343400
------------
Q = 1² + 2² + 3² + ... + 100² + 101²
= 101.102.(2.101 + 1) : 6
= 348551