K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2020

\(47^{102}\equiv7^2\equiv9\left(\text{mod 10}\right)\Rightarrow47^{102}+51^n\equiv1+9\equiv0\left(\text{mod 10}\right)\)

 c dpcm

9 tháng 12 2015

47102 có tận cùng là 9

51n có tận cùng là 1

=> 47102 + 51n tận cùng là 0 

=> chia hết cho 10 

6 tháng 10 2016

Bạn giải rõ ra đi

3 tháng 11 2019

\(51^n+47^{102}\)

\(=\overline{.....1}+\overline{.....9}\)

\(=\overline{.....0}⋮10\)

\(17^5+24^4-13^{21}\)

\(=\overline{....7}+\overline{...6}-\overline{.....3}\)

\(=\overline{.....0}⋮10\)

10 tháng 10 2016

Ta có:

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

10 tháng 10 2016

mod10 và đpcm là gì vậy bạn ?

1 tháng 12 2017

47102 có chữ số tân cùng là 9

51n có tận cùng là 1

=> 51n + 47102 có chữ số tận cùng là 0

=>A chia hết cho 10