\(51^n+47^{102}\)chia hết cho 10
\(\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
47102 có tận cùng là 9
51n có tận cùng là 1
=> 47102 + 51n tận cùng là 0
=> chia hết cho 10
\(51^n+47^{102}\)
\(=\overline{.....1}+\overline{.....9}\)
\(=\overline{.....0}⋮10\)
\(17^5+24^4-13^{21}\)
\(=\overline{....7}+\overline{...6}-\overline{.....3}\)
\(=\overline{.....0}⋮10\)
Ta có:
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)