pt thành nhân tử x^6-x^4+2x^3+2x^2 thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
a: Ta có: \(x^3-2x^2y-4x+8y\)
\(=x\left(x-2\right)\left(x+2\right)-2y\left(x-2\right)\left(x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-2y\right)\)
b: Ta có: \(a^2x^2-a^2y^2-b^2x^2+b^2y^2\)
\(=a^2\left(x-y\right)\left(x+y\right)-b^2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(a-b\right)\left(a+b\right)\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
b) Ta có: \(4x^4+y^4\)
\(=4x^4+y^4+4x^2y^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2-2xy+y^2\right)\left(2x^2+2xy+y^2\right)\)
a, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)
\(=x^2\left[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\right]=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
b, \(4x^4+y^4=\left(2x^2\right)^2+2.2x^2.y^2+\left(y^2\right)^2-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
x4-2x3+2x-1
=(x4-1)+(-2x3+2x)
=(x2+1)(x2-1)-2x(x2-1)
=(x2-1)(x2+1-2x)
=(x-1)(x+1)(x-1)2
=(x-1)3(x+1)
\(x^6-x^4+2x^3+2x^2\)
\(=x^4.\left(x^2-1\right)+2x^2.\left(x+1\right)\)
\(=x^4.\left(x-1\right).\left(x+1\right)+2x^2.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^5-x^4+2x^2\right)\)