\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......+\frac{1}{1+2+3+........+100}=????\)
Nhờ các bạn giải giúp mình và dưa ra đáp án luôn nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+\frac{2}{\left(4+1\right).4}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Vậy A=1.
Cái này có trong violympic vòng 10..bạn nhớ ôn cho kĩ nếu như bạn thi violympic!
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)
\(2A=2+\frac{3}{2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)
\(3E-E=2E=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=>E=... tự tính
nobita kun ơi............em vừa phải thôi nhé. Đã không giúp con spam nữa. điều nay ai chả biết
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2016}\right)\)
\(A=\left(1-\frac{1}{\frac{2\left(2+1\right)}{2}}\right)\left(1-\frac{1}{\frac{3\left(3+1\right)}{2}}\right)...\left(1-\frac{1}{\frac{2016\left(2016+1\right)}{2}}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{2016.2017-2}{2016.2017}\)(1)
Mà \(2016.2017-2=2016\left(2018-1\right)+2016-2018\)
\(=2016\left(2018-1+1\right)-2018=2016.2018-2018=2018.2015\)(2)
Từ (1) và (2), ta có:
\(A=\frac{4.1}{2.3}.\frac{5.2}{3.4}.\frac{6.3}{4.5}...\frac{2018.2015}{2016.2017}=\frac{\left(4.5.6...2018\right)\left(1.2.3...2015\right)}{\left(2.3.4...2016\right)\left(3.4.5...2017\right)}=\frac{1009}{3024}\)
vô tcn của PTD/KM ?, https://olm.vn/thanhvien/kimmai123az, toàn câu tl copy, con giẻ rách này ko nên sông nx
Câu hỏi của Không Phaỉ Hoỉ - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Ngọc Anh Dũng - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Nguyễn Thu Hiền - Toán lớp 9 - Học toán với OnlineMath
Còn rất rất nhìu nx, ko có t/g
= 1 là đúng
Bạn có thể cho mình biết cách giải được không vậy bạn.