K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

\(\cos2A+\cos2B+\cos2C=-1\)

\(\Leftrightarrow\cos2A+\cos2B+\cos2C+1=0\)

\(\Leftrightarrow2\cos\left(A+B\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow2\cos\left(180^0-C\right)\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C\cos\left(A-B\right)+2\cos^2C=0\)

\(\Leftrightarrow-2\cos C(\cos\left(A-B\right)-\cos C)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos C=0\\\cos\left(A-B\right)=\cos C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A-B=C\\A-B=-C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A=B+C\\A+C=B\end{matrix}\right.\)

Nếu \(A=B+C\Rightarrow A=B+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại A.

Nếu \(B=A+C\Rightarrow B=A+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại B.

Vậy, nếu \(\cos2A+\cos2B+\cos2C=-1\) thì tam giác ABC là tam giác vuông.

 
6 tháng 7 2016

a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)

Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)

Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)

b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\)\(S_{CEF}=S_{ABC}.cos^2C\)

Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)

Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)

Chúc em học tốt :)))

6 tháng 7 2016

minh k bit

13 tháng 10 2017

B A K1 K H I C

13 tháng 10 2017

Ta có  \(S_{IHK}=S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}\)

\(\Rightarrow\frac{S_{IHK}}{S_{ABC}}=\frac{S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}}{S_{ABC}}\)

                \(=1-\frac{S_{AIK}}{S_{ABC}}-\frac{S_{BKH}}{S_{ABC}}-\frac{S_{CIH}}{S_{ABC}}\)

Kẻ \(KK_1\perp AC\)

Ta có      \(\frac{S_{AIK}}{S_{ABC}}=\frac{\frac{1}{2}KK_1\cdot AI}{\frac{1}{2}BI\cdot AC}=\frac{KK_1\cdot AI}{BI\cdot AC}\)

Do \(KK_1\)song song với \(BI\Rightarrow\frac{KK_1}{BI}=\frac{AK}{AB}\)

Nên :  \(\frac{S_{AIK}}{S_{ABC}}=\frac{AI\cdot AK}{AC\cdot AB}\)

Trong tam giác vuông \(AKC,\)ta có :

\(\frac{AK}{AC}=\cos A\)

Trong tam giác vuông \(AIB,\)ta có 

\(\frac{AI}{AB}=\cos A\)

rồi tiếp theo dễ rồi , bạn suy nghĩ tiếp nhá

5 tháng 11 2021
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

9 tháng 8 2015

\(\Leftrightarrow\frac{S_{HIK}}{S_{ABC}}=1-\cos^2A-\cos^2B-\cos^2C\)

-Ta có: tam giác AIB vuông tại I \(\Rightarrow\cos A=\frac{AI}{AB}\)

Tam giác ACK vuông tại K \(\Rightarrow\cos A=\frac{AK}{AC}\)

\(\Rightarrow\cos^2A=\frac{AI}{AB}.\frac{AK}{AC}=\frac{\frac{1}{2}AI.AK}{\frac{1}{2}AB.AC}=\frac{\frac{1}{2}AI.AK.\cos A}{\frac{1}{2}AB.AC.\cos A}=\frac{S_{AKI}}{S_{ABC}}\)

Tương tự: \(\cos^2B=\frac{S_{BHK}}{S_{ABC}};\text{ }\cos^2C=\frac{S_{CIH}}{S_{ABC}}\)

\(\Rightarrow1-\cos^2A-\cos^2B-\cos^2C=\frac{S_{ABC}-S_{AKI}-S_{BHK}-S_{CIH}}{S_{ABC}}=\frac{S_{HIK}}{S_{ABC}}\text{ (đpcm)}\)

24 tháng 7 2016

Đăng sớm sớm tí chứ đăng trễ v ai giải kịp m :v

28 tháng 7 2017

\(cos^2A+cos^2B+cos^2C=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+\frac{2cos^2C}{2}\)

\(=\frac{2+cos2A+cos2B+2cos^2C}{2}\)

\(=\frac{2+2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C}{2}\)

\(=\frac{2-2cosC.cos\left(A-B\right)+2cos^2C}{2}\)

\(=\frac{2-2cosC.\left(cos\left(A-B\right)-cos\left(A+B\right)\right)}{2}\)

\(=\frac{2-4cosC.cosA.cosB}{2}=1-2cosA.cosB.cosC< 1\)

29 tháng 7 2017

bn ơi đoạn đầu bn viết lại hộ mk vs