tìm giá trị lớn nhất của biểu thức A = x+1/|x|(với x thuộc Z và x khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P đạt GTLN => 100-x nhỏ nhất và 100-x > 0
=> 100-x=1 => x=99
Khi đó P=1000/100-99=1000/1=1000
Vậy Pmax = 1000 khi x=99
\(P=\frac{1000}{100-x}\)
.\(P_{max}=>P\in Z\)
\(=>100-x=1\)
\(\Rightarrow x=100-1=99\)
\(P_{max}=\frac{1000}{100-99}=1000\)
Anh ST làm đúng rồi đấy
a) \(4^{x+1}-4^x=48\)\(\Leftrightarrow4^x.4-4^x=48\)\(\Leftrightarrow4^x\left(4-1\right)=48\)\(\Leftrightarrow4^x.3=48\)\(\Leftrightarrow4^x=16=4^2\)\(\Leftrightarrow x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)