Tìm a b c biết
a^2+b^2+c^2-ab-ac-bc=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì 2 điểm B và C thuộc tia Ax(gt)
Suy ra: AC= AB + BC
Thay số: AC = 7+2=9
Vậy AC =9 cm
b. Làm tương tự chỉ cần thay AB=a BC=b thôi
ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)
\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)
=> GTLN của P là 1 khi a=b=c
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
\(\iff\) \(ac+bc=ab+ac=bc+ba\)
+)\(ac+bc=ab+ac\)
\(\implies\)\(bc=ab\)
\(\implies\) \(c=a\left(1\right)\)
+)\(ab+ac=bc+ba\)
\(\implies\) \(ac=bc\)
\(\implies\) \(a=b\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\implies\) \(a=b=c\)
\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Vậy \(M=1\)
a) Ta có:
\(\widehat{B}=180^o-90^o-52^o=28^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)
\(\Rightarrow AB\approx11,55\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)
\(\Rightarrow\widehat{B}\approx58^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)
c) Ta có:
\(\widehat{C}=180^o-90^o-35^o=55^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)
\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)
a) \(\widehat{B}=180^o-90^o-52^o=38^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\)
b) \(\widehat{C}=180^o-90^o-58^o=32^o\)