K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

a. Vì 2 điểm B và C thuộc tia Ax(gt)

Suy ra:  AC= AB + BC

Thay số: AC = 7+2=9

Vậy AC =9 cm

b. Làm tương tự chỉ cần thay AB=a  BC=b thôi

20 tháng 1 2021

cảm ơn bạn haha

15 tháng 11 2017

ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)

\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)

=> GTLN của P là 1 khi a=b=c

9 tháng 8 2015

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

\(\iff\) \(ac+bc=ab+ac=bc+ba\)

+)\(ac+bc=ab+ac\) 

\(\implies\)\(bc=ab\)

\(\implies\) \(c=a\left(1\right)\)

+)\(ab+ac=bc+ba\)

\(\implies\) \(ac=bc\)

\(\implies\) \(a=b\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\implies\) \(a=b=c\)

\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy \(M=1\)

1 tháng 10 2023

a) Ta có:

\(\widehat{B}=180^o-90^o-52^o=28^o\) 

\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)

\(\Rightarrow AB\approx11,55\left(cm\right)\)

b) Áp dụng Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\) 

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)

\(\Rightarrow\widehat{B}\approx58^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)

c) Ta có:

\(\widehat{C}=180^o-90^o-35^o=55^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)

\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)

1 tháng 10 2023

a) \(\widehat{B}=180^o-90^o-52^o=38^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\) 

b) \(\widehat{C}=180^o-90^o-58^o=32^o\)