K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

26 tháng 1 2016

Đừng tin bn Thạch bạn ấy nói dối đấy

26 tháng 1 2016

Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.

21 tháng 5 2019

B A C D 1 3 2 4

a,  Xét \(\Delta ABC\)vuông tại A có : 

\(BC^2=AB^2+ AC^2\) 

\(BC^2=8^2+6^2\)

\(BC^2=64+36\)

\(BC^2=100\)

\(BC=10\)(cm) 

b, Xét \(\Delta ABE\)và \(\Delta BDE\)có : 

 \(AB=AD\)(gt) 

\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt) 

AE là cạnh chung 

=> \(\Delta ABE=\Delta BDE\)(c.g.c) 

=> BE = DE 

=> \(\widehat{E_1}=\widehat{E_2}\)

Ta có : 

\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù) 

\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù) 

mà \(\widehat{E_1}=\widehat{E_2}\)(cmt) 

=> \(\widehat{E_3}=\widehat{E_4}\)

Xét \(\Delta BEC\)và \(\Delta DEC\)có : 

\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên) 

EC là cạnh chung 

BE = DE  (chứng minh trên) 

=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c ) 

21 tháng 5 2019

c,  Xét \(\Delta CBD\) có : 

A là trung điểm của BD 

=> CA là đường trung tuyến ứng cạnh BD

mà \(\frac{AE}{AC}=\frac{2}{6}=\frac{1}{3}\)

=> E là trọng tâm của \(\Delta CBD\)

=> DE là đường trung tuyến ứng cạnh BC 

=> DE đi qua trung điểm cạnh BC 

a: BC=10cm

b: Xét ΔEDB có

EA là đường cao

EA là đường trung tuyến

Do đó: ΔEDB cân tại E

Xét ΔCDB có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCDB cân tại C

Xét ΔBEC và ΔDEC có

BE=DE

EC chung

BC=DC

Do đó: ΔBEC=ΔDEC

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

=>CB=CD và góc ACB=góc ACD

Xét ΔBEC và ΔDEC có

CB=CD

góc BCE=góc DCE

CE chung

=>ΔBEC=ΔDEC(c-g-c)

Xét ΔEDB có

EA vừa là đường cao, vừa là trung tuyến

=>ΔEDB cân tại E

=>ED=EB

Xét ΔCDE và ΔCBE có

CD=CB

DE=BE

CE chung

=>ΔCDE=ΔCBE(c-c-c)

góc CDE+góc EDA=góc CDA

góc CBE+góc EBA=góc CBA

mà góc CDA=góc CBA và góc EDB=góc EBD

nên góc CDE=góc CBE

Xét ΔCEB và ΔCED có

góc CBE=góc CDE

BC=DC

góc BCE=góc DCE

=>ΔCEB=ΔCED

10 tháng 2 2018

a)  Ta có:    \(6^2+8^2=36+64=100\)

                   \(10^2=100\)

\(\Rightarrow\)\(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(\Delta ABC\)vuông tại  A

b)    \(\Delta ABC\)\(\perp\)\(A\)

\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}=90^0\)   (1)

\(\Delta ABH\)\(\perp\)\(H\)

\(\Rightarrow\)\(\widehat{BAH}+\widehat{ABH}=90^0\)   (2)

Từ  (1)  và  (2)  suy  ra:   \(\widehat{BAH}=\widehat{C}\)  (đpcm)