Chứng minh: 10n _ 1 + 72n chia hết cho 81 với n thuộc N
Các bạn nhanh giúp mk nha, mai nộp rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Vì 243 = 9 x 27 nên 243 chia hết cho 9 và 243a chia hết cho 9
Vì 657 = 9 x 27 nên 657 chia hết cho 9 và 657b chia hết cho 9
Theo tính chất chia hết cho một tổng.Suy ra 243a + 657b chia hết cho 9 với mọi a;b thuộc N
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z
Chúc sớm tìm được thêm nhiều lời giải nha!
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Theo đề ta có :
n(n + 5) - (n - 3)( n + 2 ) = n.n + 5.n - (n.n + 2.n -3.n - 3.2)
= n\(^2\) + 5n - ( n\(^2\) + 2n - 3n - 6)
= n\(^2\) + 5n - n\(^2\) - 2n + 3n + 6
= (n \(^2\) - n\(^2\)) + ( 5n - 2n + 3n) +6
= 0 + 6n +6
= 6(n+1) luôn luôn chia hết cho 6
Vậy biểu thức n(n + 5) - (n - 3)(n + 2) luôn luôn chia hết cho 6 (đpcm)
k vs kb với mik nhé, 3
Ta có: 10n + 72n - 1 = 99...9 (n chữ số 9) + 1 + 72n - 1
= 99...9 (n c/s 9) + 72n
= 9(11...1 + 8n)
= 9[9n + (11...1 - n)]
Có: số 11...1 và n khi chia cho 9 có cùng số dư
=> 11...1 - n chia hết cho 9
Mà 9n chia hết cho 9
=> 9n + (11...1 - n) chia hết cho 9
=> 9[9n + (11....1 - n)] chia hết cho 81
Vậy...
10n+72-1=10n-1-9n+81n
=999.....99(n chữ số)-9n+81n
=9(1111...1(n chữ số)+n)+81n
Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9
nên 1111...1(n chữ số)-n chia hết cho 9
=> 9(111...1(n chữ số)-n) chia hết cho 81
Mà 81n cũng chia hết cho 81
=> 10n+72n-1 chia hết cho 81 với
n E N
1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)
A=\(\frac{n\left(n+1\right)}{2}\)-7
Để a chia hết cho 10 thì \(\frac{n\left(n+1\right)}{2}\) có tận cùng 7 tức là n(n+1) có tận cùng 4
vô lí vì tích 2 số liên tiếp chi có tận cùng là 0, 2, 6 nên A không chia hết cho 10
Ta có :
Cho biểu thức tính trên là B
B= 10n + 72n - 1 = 10n-1+72n
10n -1= 999....99 (có n-1 chữ số 9)= 9x 111...11+8n=111..1 -n + 9n
A=10n -1+72n = 9 (111...1) 72n=>B :9=111...11+ 8n= 11....1-n +9n
Ta thấy : 11...1 có n chữ số 1 tổng các chữ số là n
11....1 -n chia hết cko 9
=> B: 9 = 11.....1 -n + 9n chia hết cko 9
k mình nha :))
Cho biểu thức chính trên là B :
B = 10n + 72n - 1 = 10n - 1 + 72n
10n - 1 = 999...99 ( có n - 1 chữ số 9 ) = 9x
111...11 + 8n = 111...11 - n + 9n
A= 10n - 1 + 72n = 9 ( 111...11 ) 72n => B : 9 = 111...11 + 8n = 111...11 - n chia hết cho 9
=> B : 9 = 111...11 - n + 9n chia hết cho 9