Tìm a và b biết: ab = a . 3 . b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>a=5-b
\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)
\(\Leftrightarrow2b^2-10b+25-13=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
hay \(b\in\left\{2;3\right\}\)
\(\Leftrightarrow a\in\left\{3;2\right\}\)
\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)
\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)
\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).
Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)
\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=b=2\).
Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)
a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)
b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)
Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có
a/2 = b2/3 = c3/4 = 2a/2*2 = 2a/4 = 2a-2b/4-3 = 2(a-b)/1 = 2*15 = 30
>a/2 = 30 b2/3=30 c3/4=30
>a=30*2 b=30*3/2 c3=30*4/3
>a=60 b=45 c=40
Vậy a=60;b=45;c=40
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(P_{max}=12\) khi \(a=b=c=1\)
Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
\(\Rightarrow\sqrt{3}\le a+b+c\le3\)
\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)
\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)
\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị
Ta có: ab=10a+b=a.3+b2
<=> 7.a=b2-b=b.(b-1).
+/ TH1: b=7 => a=b-1=6 => ab là 67
+/ TH2: b-1=7 => b=8, a=\(\frac{8\left(8-1\right)}{7}=8\) => ab=88