Tìm các số nguyên x;ythỏa mãn phương trình: x2_2x=27y3
Các bạn nhớ trình bày cả lời giải nữa đấy nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. It was warm, so I took off my coat. (take).
2. The film wasn't very goor. I didn't enjoy it very much. (enjoy)
3. I knew Sarah was very busy, so I ..... her (disturb)
4. I was very tired, so I ..... the party early. (leave)
5. The bed was very uncomfortable. I ..... very well (sleep)
6. The window was open and a bird ..... into the room (fly)
x/6 - 1/y = 1/2
=> 1/y = x/6 - 1/2
=> 1/y = x-3/6
=> 6 = y(x - 3)
bn tự xét bảng là ra
Vì x-17<24 nên x<24+17=41
Vì x+5>41 nên x>41-5=36
36<x<41 . Mà x là số nguyên nên x=37,38,39,40
x - 17 < 24 và x + 5 > 41
Các số x là: 37 ; 38 ; 39 ; 40
Đó là các số nguyên dương
Không thể có số âm được
xy . yz . zx = (-18).48.(-24)
x2y2z2 = 20736
xyz = \(\sqrt{20736}\)= 144
=> z = \(\frac{xyz}{xy}=\frac{144}{-18}=-8\)
x = \(=\frac{xyz}{yz}=\frac{144}{48}=3\)
y = \(\frac{xyz}{xz}=\frac{144}{-24}=-6\)
vậy ...
Giải
Theo đề bài, ta có: \(\hept{\begin{cases}xy=-18\\yz=48\\zx=-24\end{cases}\Rightarrow\left(xy\right).\left(yz\right).\left(zx\right)=\left(-18\right).48.\left(-24\right)}\)
\(\Leftrightarrow x^2y^2z^2=20736\)
\(\Leftrightarrow\left(xyz\right)^2=20736\)
\(\Leftrightarrow xyz=\pm144\)
\(TH1:xyz=-144\)
\(\Rightarrow\hept{\begin{cases}z=-144\div\left(-18\right)=8\\x=-144\div48=-3\\y=-144\div\left(-24\right)=6\end{cases}}\)
\(TH2:xyz=144\)
\(\Rightarrow\hept{\begin{cases}z=144\div\left(-18\right)=-8\\x=144\div48=3\\y=144\div\left(-24\right)=-6\end{cases}}\)
A lẻ thì B chăn, A chắn thì B lẻ.
B>A nên B lẻ(ko có số n tố chẵn ngoài 2). Vậy A=2. Suy ra x=1. Em lớp 8 thoy nên chỉ nghĩ ra cách này
Ta thấy A và B là 2 số TN liên tiếp
=> luôn tồn tại 1 số chẵn
Mà A< B
Vậy => A=2 và B=3
=> \(x^4+x-2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+2\right)=0\Leftrightarrow x=1\)
Do với \(\forall x\in N,x^3+x^2+x+2>0\)
Vậy x=1
a) Gọi tích của năm số nguyên liên tiếp là ; \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
Tích của 5 số nguyên liên tiếp thì chia hết cho 3 và 5
Tích 4 số nguyên liên tiếp chia hết cho 4 và 2
Do đó : Tích của 5 số nguyên liên tiếp chia hết cho : 2.3.4.5 = 120
b) \(x^3+7y=y^3+7x\left(1\right)\Leftrightarrow x^3-y^3-7x+7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)
Mà \(x\ne y\)nên ta xét trường hợp : \(x^2+xy+y^2-7=0\)
\(\Leftrightarrow\left(x^2+y^2\right)+\left(x+y\right)^2=14\)
\(\Rightarrow\left(x+y\right)^2\le14\Rightarrow x+y\le3\)
Do đó, ta sẽ chọn các giá trị x,y trong khoảng \(\left(1;2\right)\)vì x,y>0
Vậy các số nguyên dương phân biệt thoả mãn phương trình là :
\(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(A=\frac{4x+4}{2x+4}=\frac{2\left(2x+2\right)}{2\left(x+2\right)}=\frac{2x+2}{x+2}=\frac{2x+4-2}{x+2}=\frac{2\left(x+2\right)-2}{x+2}=2-\frac{2}{x+2}\)
Để A thuộc Z => 2/x+2 thuộc Z => 2 chia hết cho x + 2
=> x + 2 thuộc ước của 2 là : { 1 ; 2 ; -1 ; -2 }
(+) x + 2 = 1 => x = -1
(+) x+ 2 = 2 => x = 0
(+) x + 2 = -1 => x = -3
(+) x+ 2 = -2 => x = -4
2 tương tự