K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

tui chịu mấy má

22 tháng 7 2017

Ta đặt \(A=\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\) . Ta sẽ phân tích A thành nhân tử:

\(A=\left(x-y+y-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4-\left(z-x\right)^4\right]\)

\(A=\left(x-z\right).B\)

Ta phân tích \(\left(y-z\right)^4-\left(z-x\right)^4=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x+y-2z\right)\left(y-x\right)\)

và \(\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3\)

\(=\left(x-y\right)\left[\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\right]\)

Đặt \(C=\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\)

 \(D=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x-z+y-z\right)\)

\(=\left(x-z\right)\left(y-z\right)^2+\left(y-z\right)^3-\left(z-x\right)^3+\left(y-z\right)\left(z-x\right)^2\)

\(C-D=\left(y-z\right)\left[-\left(x-y\right)^2-3\left(y-z\right)^2-\left(z-x\right)^2-\left(x-y\right)^2+\left(x-y\right)\left(z-x\right)-\left(z-x\right)^2\right]\)

 \(=\left(y-z\right)\left[5\left(-x^2+xy-y^2-z^2+yz+zx\right)\right]\)

Vậy \(A=5\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Vậy \(A=\left(x-z\right)\left(x-y\right)\left(y-z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

nên chia hết cho \(5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

23 tháng 7 2017

e ko hỉu khúc C-D cho lắm

24 tháng 8 2017

Đặt \(x-y=a;y-z=b;\Rightarrow z-x=-b-a\)

\(\Rightarrow\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5=a^5+b^5+\left(-a-b\right)^5\)

\(=\left(a^5+b^5\right)+\left(-a^5-5a^4b-10a^3b^2-10a^2b^3-5ab^4-b^5\right)\)

\(=-5a^4b-10a^3b^2-10a^2b^3-5ab^4\)

\(=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)

\(=-5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)

\(=-5ab\left(a+b\right)\left(a^2+ab+b^2+a+b\right)⋮-5ab\left(-a-b\right)\)

Hay \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5⋮5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)(đpcm)

17 tháng 2 2021

agdfghsegergerg

17 tháng 9 2021

\(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)

Do \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 5, một số chia hết cho 2 và một số chia hết cho 3\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2.3.5=30\)

Mặt khác: \(x\left(x-1\right)\left(x+1\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮6\)\(\Rightarrow5x\left(x-1\right)\left(x+1\right)⋮5.6=30\)

\(\Rightarrow x^5-x=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)⋮30\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}y^5-y⋮30\\z^5-z⋮30\end{matrix}\right.\)

\(\Rightarrow\left(x^5+y^5+z^5\right)-\left(x+y+z\right)⋮30\)

Mà \(x+y+z=2010⋮30\)

\(\Rightarrow x^5+y^5+z^5⋮30\)

 

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0