K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Ta có 

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow2\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

Vậy GTLN là 2 đạt được khi \(a=b=\frac{1}{2}\)

19 tháng 10 2016

thankz

11 tháng 9 2023

Ta có: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\)=\(2a+2b\le2\)

\(Max\)\(M=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+\sqrt{b}\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow a=b=\dfrac{1}{2}\)

11 tháng 9 2023

\(M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2;a+b\le1\left(a;b>0\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số \(\left(1;\sqrt[]{a}\right);\left(1;\sqrt[]{b}\right)\)

\(M=\left(1.\sqrt[]{a}+1.\sqrt[]{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)  \(\left(a+b\le1\right)\)

\(\Rightarrow M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2\le2\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{1}{\sqrt[]{a}}=\dfrac{1}{\sqrt[]{b}}\Leftrightarrow a=b=1\)

\(\Rightarrow GTLN\left(M\right)=2\left(khi.a=b=1\right)\)

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

15 tháng 10 2019

\(a+b+c\le\sqrt{3}\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=1\)

Thay vào M ta có: \(M\le\frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét: \(\left(\frac{a}{a+b}+\frac{a}{a+c}\right)^2\ge\frac{4a^2}{\left(a+b\right)\left(a+c\right)}\Leftrightarrow\frac{a}{a+b}+\frac{a}{a+c}\ge\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Tương tự rồi cộng vế vs vế ta được: \(M\le\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}}{2}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c = \(\frac{\sqrt{3}}{3}\)

17 tháng 10 2019

cosplay de chuyen thai nguyen 17-18

9 tháng 5 2021

\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)

\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)

\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)

\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)

\(\Rightarrow p\le2\sqrt{2}\)

Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán để mọi người iheeur đề của bạn hơn nhé.

23 tháng 10 2018

Với a, b dương:

\(8^2=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\ge\frac{4}{\sqrt{ab}}\)

\(\Rightarrow\frac{1}{\sqrt{ab}}\le\frac{64}{4}=16\)

max A=16 khi a=b=1/4