a,Tìm chữ số tận cùng của số \(2017^{2018}\)
b,Tìm Số Tự Nhiên n, biết n + 2 chia hết cho \(n^2\)+ 1
c, Tìm Số Tự Nhiên n, biết n + 34 là bội của n + 1
Làm ơn giải rõ ra giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
gợi ý:
n^2-2n có chữ số tc là 0 hoặc 5
Vì n chia hết cho 2 =>n có cs tận cùng là : 0,2,4,6,8
xét từng Th
n2-n = n*(n-1),
TH1 : n = 0, thỏa mãn, TH2 n-1 chia hết cho 5, suy ra n =6, còn n=1 thì ko thỏa mãn.
n chia hết cho 2 => n có tận cùng là các chữ số chẵn (1)
Ta có : \(n^2-n=n\left(n-1\right)\) chia hết cho 5
=> n chia hết cho 5 hoặc n-1 chia hết cho 5
+) n chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5
+) n-1 chia hết cho 5 => n có chữ số tận cùng = 0 hoặc 5 => n có chữ số tận cùng là 1 và 6
Có : n(n-1) chia hết cho 5 có chữ số tận cùng là 0;1;5;6 (2)
Từ (1)(2) ta có chữ số tận cùng của n là 0 ; 6
Gợi ý : n^2 - 2n có chữ số tận cùng là 0 hoặc 5
Vì n chia hết cho 2 => n có chữ số tận cùng là 0;2;4;6;8
Xét từng TH và lập luận để bớt TH cần xét
số chia hết cho 5 có c/s tận cùng là 0 hoặc 5
vì nchia hết cho 2
suy ra n có chữ số tận cùng là 0
a) bn tự lm
b) n + 2 chia hết cho n2 + 1
=> n.(n + 2) chia hết cho n2 + 1
=> n2 + 2n chia hết cho n2 + 1
=> n2 + 1 + 2n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)
Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)
=> 2.(n + 2) chia hết cho n2 + 1
=> 2n + 4 chia hết cho n2 + 1 (2)
Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1
=> 2n + 4 - 2n + 1 chia hết cho n2 + 1
=> 5 chia hết cho n2 + 1
Mà \(n\in N\) nên \(n^2+1\ge1\)
\(\Rightarrow n^2+1\in\left\{1;5\right\}\)
\(\Rightarrow n^2\in\left\{0;4\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Thử lại ta thấy trường hợp n = 2 không thỏa mãn
Vậy n = 0
c) bn tự lm
đon giản wá