K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Nên xem lại đề bạn nhé!

18 tháng 10 2016

\(\frac{2x+8}{2x+1}=\frac{2x+1+7}{2x+1}=1+\frac{7}{2x+1}\)

29 tháng 3 2020

\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{8}{4x^2-1}\)

\(\Leftrightarrow\frac{4x^2+4x+1-4x^2+4x-1-8}{4x^2-1}=0\)

\(\Leftrightarrow\frac{8x-8}{4x^2-1}=0\)

\(\Rightarrow8x-8=0\)

\(\Rightarrow x=1\)

tick mình nha!

29 tháng 3 2020

\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{9}{4x^2-1}\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x+1=9\)

\(\Leftrightarrow8x=7\)

Vậy x=7/8

20 tháng 5 2016

\(\frac{1}{2x^2+10x+12}+\frac{1}{2x^2+14x+24}+\frac{1}{2x^2+18x+40}+\frac{1}{2x^2+22x+60}=\frac{1}{8}\)

<=> \(\frac{1}{2x^2+6x+4x+12}+\frac{1}{2x^2+6x+8x+24}+\frac{1}{2x^2+8x+10x+40}+\frac{1}{2x^2+12x+10x+60}=\frac{1}{8}\)

<=> \(\frac{1}{2x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{2x\left(x+3\right)+8\left(x+3\right)}+\frac{1}{2x\left(x+4\right)+10\left(x+4\right)}+\frac{1}{2x\left(x+6\right)+10\left(x+6\right)}=\frac{1}{8}\)

<=> \(\frac{1}{\left(x+3\right)\left(2x+4\right)}+\frac{1}{\left(x+3\right)\left(2x+8\right)}+\frac{1}{\left(x+4\right)\left(2x+10\right)}+\frac{1}{\left(x+6\right)\left(2x+10\right)}=\frac{1}{8}\)

<=> \(\frac{1}{2\left(x+2\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)\left(x+4\right)}+\frac{1}{2\left(x+4\right)\left(x+5\right)}+\frac{1}{2\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)

<=> \(\frac{1}{2}.\left[\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\right]=\frac{1}{8}\)

<=> \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}:\frac{1}{2}\)

<=> \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{4}\)

<=> \(\frac{4\left(x+6\right)-4\left(x+2\right)}{4\left(x+2\right)\left(x+6\right)}=\frac{\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)}\)

<=> \(4\left(x+6\right)-4\left(x+2\right)=\left(x+2\right)\left(x+6\right)\)

<=> \(4\left(x+6-x-2\right)=x^2+8x+12\)

<=> \(4.4=x^2+8x+12\)

<=> \(x^2+8x-4=0\)

<=> ...

Đến đây bạn tự giải tiếp. Mình bấm máy 570ES PLUS II thì ra nghiệm \(x\approx0,47\).

 

 

20 tháng 5 2016

icon-chat

20 tháng 1 2018

\(\left(2x+1\right)^2-\left(2x-1\right)^2-8=0\)  quy đồng khử mẫu

\(4x^2+4x+1-4x^2+4x-1-8=0\)

\(8x=8\)

\(x=1\)

12 tháng 5 2018

\(DKXD:x#\frac{1}{2}va-\frac{1}{2}\)

suy ra \(\left(2x+1\right)8+\left(2x-1\right)\left(2x-1\right)=\left(2x+1\right)\left(2x+1\right)\)

tương đương  \(16x+8+4x^2-4x+1=4x^2+4x+1\)

tương đương \(8x+8=0\)

tương đương\(8\left(x+1\right)=0\)

khi và chỉ khi  \(x=0\left(nhan\right)\)

\(s\left\{0\right\}\)

10 tháng 2 2020

Bạn sửa lại đề dùm mình nha, sai đề hơi nhiều đó.

ĐKXĐ:\(x\ne0;2\)

\(P=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2+2x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}-\frac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right).\frac{x^2-x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}+\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right).\frac{x^2-2x+x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)^2}{2\left(x^2+4\right)\left(x-2\right)}+\frac{4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right).\frac{x\left(x-2\right)+\left(x-2\right)}{x^2}\)

\(P=\frac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{x^3-4x^2+4x-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{\left(x^3+4x\right)\left(x-2\right)\left(x+1\right)}{2\left(x^2+4\right)\left(x-2\right).x^2}\\ P=\frac{x\left(x^2+4\right)\left(x-2\right)\left(x+1\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\\ P=\frac{x+1}{2x}\)

10 tháng 2 2020

Bạn thông cảm tại mắt mk hơi yếu với lại chữ mk ko đc đẹp lắm nên nhiểu khi chép đề sai ạ! Cảm ơn bn vì đã giải giúp mk ạ!

26 tháng 4 2017

ĐKXĐ : \(\orbr{\begin{cases}x\ne-\frac{1}{2}\\x\ne\frac{1}{2}\end{cases}}\) 

 \(\Rightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

 \(\Leftrightarrow4x^2+4x+1-4x^2+4x-1-8=0\)

 \(\Leftrightarrow8x-8=0\Leftrightarrow x=1\)(NHẬN)

Vậy tập nghiệm của phương trình  là : S = {1}

 b) ta có :  *  \(\left|x-4\right|=x-4\) khi    \(x-4\ge0\)hay \(x\ge4\)

\(\Leftrightarrow\left|x-4\right|+3x=5\) \(\Leftrightarrow x+3x=5+4\Leftrightarrow x=\frac{9}{4}\)(LOẠI)

                 ** \(\left|x-4\right|=4-x\)  khi  \(x-4< 0\) hay \(x< 4\)

 \(\Leftrightarrow\left|x-4\right|+3x=5\)\(\Leftrightarrow4-x+3x-5=0\Leftrightarrow2x-1=0\)\(\Leftrightarrow x=\frac{1}{2}\)(NHẬN)

 vậy tập nghiệm của phương trình là : S = { 1/2}

21 tháng 5 2019

Cách này có được không ạ?Em không chắc đâu nha!

ĐKXĐ: \(x\ne-1;y\ne0\)

\(HPT\Leftrightarrow\hept{\begin{cases}\frac{3y-2x}{x+1}-\frac{2x}{y}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}+1=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\\frac{2\left(3y+2x\right)}{x+1}+\frac{2x}{y}=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3y}{x+1}-\frac{2x}{y}-\frac{2x}{x+1}=2\\2.\frac{3y}{x+1}+\frac{2x}{y}+2.\frac{2x}{x+1}=7\end{cases}}\). Đặt \(\frac{3y}{x+1}=a;\frac{2x}{y}=b;\frac{2x}{x+1}=c\)

Hệ phương trình trở thành: \(\hept{\begin{cases}a-b-c=2\\2a+b+2c=7\end{cases}}\)(*).Cộng theo vế hai phương trình của hệ:

\(3a+c=9\Leftrightarrow c=9-3a\)(1).Thay vào cả hai phương trình của hệ (*)

Hệ phương trình tương đương với \(\hept{\begin{cases}4a-b-9=2\\-a+b+9=7\end{cases}}\) (**)

Cộng theo vế hai phương trình của hệ (**) được: 3a = 9 suy ra a = 3 (2)

Thay vào (1) tìm được c = 9 - 3a = 9 - 3 . 3  = 0 . Thay vào phương trình thứ nhất của hệ (*) suy ra: b =  a -c - 2 = 3 - 0 -2 = 1

Từ đây tổng hợp lại các kết quả ta được a = 3 ; b = 1; c = 0. Thay vào cái đặt ban đầu hết,ta được:

\(\frac{3y}{x+1}=3;\frac{2x}{y}=1;\frac{2x}{x+1}=0\)

+) \(\frac{2x}{x+1}=0\Rightarrow x=0\) ( thỏa mãn ĐKXĐ)

+) \(\frac{2x}{y}=1\Rightarrow y=2x=0\)( không thỏa mãn ĐKXĐ)

Vậy x = 0 và không tồn tại y thỏa mãn suy ra không có bộ số (x;y) nào thỏa mãn hệ phương trình.