Chi tứ diện ABCD , tam giác ABC và ACD cân tại A và B; M là trung điểm của CD.
a) Cm (ACD) ⊥(BCD)
b) Kẻ MH⊥BM chứng minh AH⊥(BCD)
c) Kẻ HK⊥(AM), cm HK⊥(ACD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự 2B. Ta chứng minh được ABCD là hình thang vuông. Từ đó tính được diện tích ABCD là:
S A B C D = s A B C + s A C D = 1 2 A C . A B + 1 2 C A . D H = 1 2 .4.4 + 1 2 .4.2 = 12 c m 2
(Với DH là đường cao tam giác ACD)
(1-->27 đâu rồi)
28.
AB=AD = BC => ABC cân
=> góc BAC = BCA
mà BCA= ACD (so le)
=> BCA= ACD
=> CA là tia phân giác góc c
..dpcm...
29.là hình thang cân
xét 2 tam giác AOC,BOD
đây là 2 tam giác cân ,chung có số đo góc đỉnh A = nhau (đđ)
=> 2 tam giac đồng dạng
=> góc C= góc D => AC\\ DC (2 góc so le = nhau)
lại có AB = CD => nó cân (2 đg chéo = nhau)
30.
a. hình thang cân
2 tam giác cân ADE ~ ABC => D=E => DE\\ BC (đồng vị)
BD= AB-AD = AC-AE = EC
b.
như trên đã cm DE = BD=EC => EB là tia phân giác goc B
=> E,D là chân đg phân giác hạ từ B,C đến AC,AB
Đáp án là B.
B C = A B 2 = 2 a 2 .Gọi H là trung điểm BC ta có:
A H ⊥ B C B C = A B C ∩ D B C A B C ⊥ D B C ⇒ A H ⊥ D B C
kẻ H E ⊥ D C , H K ⊥ A E (1)
D C ⊥ H E D C ⊥ A H ( d o A H ⊥ D B C ⊂ D C ) ⇒ D C ⊥ A H E ⇒ D C ⊥ H K 2
từ 1 & 2 H K ⊥ A D C ⇒ d H ; A D C = H K
d B ; A D C = 2 d H ; A D C = 2 A H . H E A H 2 + H E 2 = 2 6 3
A H = B C 2 , H E = A B 2 ; A H = B C 2 = a 2 , H E = B C 2 = a
Tổng số phần của 2 diện tích tam giác :
3 + 2 =5 ( phần )
Diện tích tam giác ACD :
70 : 5 x 3 = 52 ( cm2)
Diện tích tam giác ABC :
70 : 5 x 2 = 28 ( cm2)
Vậy : diện tích tam giác ACD : 52 cm2
______________ ABC : 28 cm2
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
Đáp án A
Chọn hệ trục tọa độ Oxy
A D = 2 a tan 60 o = 2 a 3
Từ M kẻ MH song song với AC ta có MH =a
PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1
Vậy khoảng cách từ
P
(
0
;
4
a
;
0
)
đến (BCD) là: