K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

1+5^1+5^2+5^3+5^4+.....+5^101

= ( 1+ 5^1) + (5^2 + 5^3) + ...+(5^100 + 5^101)

= 1.(1+5) + 5^2. (1+5)+...+5^100.(1+5)

=(1+5^2+...+5^100).6 chia hết cho 6(vì 6 chia hết cho 6 )

vậy  1+5^1+5^2+5^3+5^4+.....+5^101 chia hết cho 6

17 tháng 10 2016

Gọi dãy trên là A

A=(1+5^1)+(5^2+5^3)+...+(5^100+5^101)

A=1.(1+5^1)+5^2.(1+5^1)+...+5^100.(1+5^1)

A=1.6+5^2.6+...+5^100.6

A=6.(1+5^2+...+5^100) chia hết cho 6

14 tháng 10 2018

1)  \(B=1+5+5^2+5^3+....+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)

\(=\left(1+5\right)+5^2\left(1+5\right)+....+5^{100}\left(1+5\right)\)

\(=\left(1+5\right)\left(1+5^2+....+5^{100}\right)\)

\(=6\left(1+5^2+...+5^{100}\right)\)\(⋮6\)

14 tháng 10 2018

2)  \(C=81^3+3^{14}+27^5\)

\(=\left(3^4\right)^3+3^{14}+\left(3^3\right)^5\)

\(=3^{12}+3^{14}+3^{15}\)

\(=3^{12}.\left(1+3^2+3^3\right)\)

\(=3^{12}.37\)\(⋮37\)

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

5 tháng 10 2015

Mình giúp cho đáp án đúng 100%

5^2003+5^2002+5^2001 chia hết cho 31

=5^2001.(1+5+5^2)

=5^2001.31 chia hết cho 3

hai bài kia tương tự rất dễ đúng ko

17 tháng 9 2016

Ta có: 52003 + 52002 + 52001

= 52001.(1 + 5 + 25)

= 52001 . 31 chia hết cho 31

Ta có: 1 + 7 + 72 + ...... + 7101

= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)

= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)

= 1.8 + 72.8 + ..... + 7100 . 8

= 8.(1 + 72 + ..... + 7100) chia hết cho 8

31 tháng 10 2018

1 +5+ 52 +53 + ...+ 5100 + 5101

= (1 + 5) + (52 + 53) + ... + (5100 + 5101)

= 6 + 52(1 + 5) + ... + 5100.(1 + 5)

= 6 + 52.6 + ... + 5100.6

= 6.(1 + 52 + ... + 5100\(⋮\)6

5 tháng 11 2018

\(1+5+5^2+.....+5^{101}⋮6\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)

\(=6+\left(5^2.1+5^2.5\right)+.....+\left(5^{100}.1+5^{100}.5\right)\)

\(=6+5^2.\left(1+5\right)+.....+5^{100}.\left(1+5\right)\)

\(=6+5^2.6+....+5^{100}.6\)

\(=\left(1+5^2+....+5^{100}\right).6⋮6\)

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

25 tháng 9 2016

Ta có: 52003 + 52002 + 52001 

= 52001.(52 + 5 + 1)

= 52001 . 31 chia hết cho 31 

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

2 tháng 12 2015

 ( 2+ 2) + ( 2+ 2) + ... + ( 22009 + 22010 )

= 2. ( 1 + 2 ) + 2. ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

= 3 . ( 2 + 2+ ... + 22009 ) chia hết cho 3. => ĐPCM