K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

xin loi to biet rui

  Vì BHCD là HBH nên H,M,D thẳng hàng 
Tam giác AHD có OM là ĐTBình => AH = 2 OM 
Và AH // OM 
2 tam giác AHG và MOG có 
góc agh =mgo(đ đ) 
nên tam giác ahg đồng dạng mog 
ah/mo=ag/mg 
Hay AG = 2MG 
Tam giác ABC có AM là trung tuyến; G thuộc AM 
Do đó G là trọng tâm của tam giác ABC 


tam giác bhc= tam giác bdc ( tính chất hình bình hành) 
b,d,c nội tiếp (o) 
Nên tam giác BHC cũng nội tiếp (K) có bán kính a 
Do đó Chu vi(K) = 2pi.a( ĐVĐD) 
5 sao nhé

17 tháng 10 2016

biết rồi sao vẫn hỏi ?

17 tháng 3 2019

a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn

17 tháng 3 2019

b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD

a) Ta có: BHCD là hình bình hành(gt)

nên CH//BD và BH//CD

mà CH\(\perp\)AB(gt) và BH\(\perp\)AC(gt)

nên BD\(\perp\)AB và CD\(\perp\)AC

Suy ra: B,C nằm trên đường tròn đường kính AD(1)

Ta có: MD//BC(gt)

AM\(\perp\)BC(gt)

Do đó: MD\(\perp\)AM(Định lí 1 từ vuông góc tới song song)

hay M nằm trên đường tròn đường kính AD(2)

Từ (1) và (2) suy ra A,B,C,D,M cùng thuộc 1 đường tròn(Đpcm)

28 tháng 6 2021

b) Vì BMCD nội tiếp (chứng minh ở câu a) và \(MD\parallel BC\) (đề cho)

\(\Rightarrow BMDC\) là hình thang cân \(\Rightarrow BM=CD\)

c) Vì BHCD là hình bình hành có K là trung điểm BC 

\(\Rightarrow\) K là trung điểm HD 

Xét \(\Delta ADH\) có O là trung điểm AD (đường kính), K là trung điểm HD

\(\Rightarrow OK\) là đường trung bình \(\Rightarrow OK\parallel AH\) và \(OK=\dfrac{1}{2}AH\)

Vì \(OK\parallel AH\) \(\Rightarrow\dfrac{AH}{OK}=\dfrac{AG}{GK}=2\Rightarrow AG=2GK\Rightarrow\dfrac{AG}{AK}=\dfrac{2}{3}\)

\(\Rightarrow G\) là trọng tâm tam giác ABC

1: Xét tứ giác BHCD có

O là trung điểm của BC

O là trung điểm của HD

Do đó: BHCD là hình bình hành

 

6 tháng 1 2022

2)kẻ đường thẳng đi qua O và vuông góc với BC đường thẳng là cắt đoạn thẳng AD tại I

 

21 tháng 5 2018

a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
 b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD