Cho tam giác ABC có A(0;3), B(3;2), C(2;4). Tìm tâm đường tròn ngoại tiếp tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB → = (−a; b; 0) và AC → = (−a; 0; c)
Vì AB → . AC → = a 2 > 0 nên góc ∠ BAC là góc nhọn.
Lập luận tương tự ta chứng minh được các góc ∠ B và ∠ C cũng là góc nhọn.
a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.
\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)
b)
Theo định lí tổng 3 góc trong tam giác ABC, ta có:
\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)
\( \Rightarrow\widehat C = \widehat B = {40^o}\)
\( \Rightarrow \) ABC là tam giác cân tại A.
Tọa độ trọng tâm G của ΔABC là \(G\left(1;\dfrac{m}{3}\right)\)
⇒ \(\left\{{}\begin{matrix}\overrightarrow{AG}=\left(2;\dfrac{m}{3}\right)\\\overrightarrow{BG}=\left(-3;\dfrac{m}{3}\right)\end{matrix}\right.\)
Để ΔGAB vuông tại G
⇒ GA ⊥ GB
⇒ \(\overrightarrow{GA}\) ⊥ \(\overrightarrow{GB}\)
⇒ \(\overrightarrow{GA}.\overrightarrow{GB}=0\)
⇒ 2 . (-3) + \(\dfrac{m^2}{9}\) = 0
⇒ m2 = 6 . 9 = 54
⇒ m = \(\pm\sqrt{54}\)
Mình chắc chắn cách làm của mình là đúng còn về tính toán thì chưa chắc nên bạn tự kiểm tra nhá
Gọi tọa độ điểm H(a;b)
Ta có: A H → = a + 1 ; b − 1 , B H → = a ; b − 2 , B C → = 1 ; − 1 , A C → 2 ; 0
Do H là trực tâm tam giác ABC nên:
A C → . B H → = 0 B C → . A H → = 0 ⇒ 2. a + 0. b − 2 = 0 1. a + 1 − 1. b − 1 = 0 ⇒ a = 0 b = 2
Vậy H (0; 2).
Chọn A
Ta có: \(AC^2+BC^2=\left(a\sqrt{2}\right)^2+\left(a\sqrt{3}\right)^2=2a^2+3a^2=5a^2\)
\(AB^2=\left(a\sqrt{5}\right)^2=5a^2\)
=> \(AB^2=AC^2+BC^2\)
=> Tam giác ABC vuông tại C (định lí Pytago đảo)
Chọn B.
Ta có:
Mặt khác
Suy ra diện tích tam giác ABC là 1/2.AB.BC = 6.
Ta có:
Suy ra tam giác ABC vuông tại A do đó trực tâm H trùng với A
Vậy H( -1 ; 3)
Chọn B.
Gọi đường tròn ngoại tiếp tam giác là
\(\left(C\right):x^2+y^2-2ax-2by+c=0\). Khi đó tâm đường tròn ngoại tiếp tam giác ABC là \(I\left(a,b\right)\)
Ta có: \(A\left(0,3\right)\in\left(C\right)\Rightarrow9-6b+c=0\Rightarrow-6b+c=-9\)
\(B\left(3,2\right)\in\left(C\right)\Rightarrow9+4-6a-4b+c=0\Rightarrow-6a-4b+c=-13\)
\(C\left(2;4\right)\in\left(C\right)\Rightarrow4+16-4a-8b+c=0\Rightarrow-4a-8b+c=-20\)
Ta có hệ: \(\left\{{}\begin{matrix}-6b+c=-9\\-6a-4b+c=-13\\-4a-8b+c=-20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{5}{2}\\c=6\end{matrix}\right.\)
Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là \(I\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)