CMR:
a) \(x^2-4x+5>0\) với mọi x
b) \(x^2-4xy+5y^2\ge0\) với mọi x, y
c) \(3-2x-x^2< 0\)với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
a ) \(x^2-4x+5\)
\(=\left(x^2-2.2x+4\right)+1\)
\(=\left(x-2\right)^2+1\\\)
Ta có : \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\) ( ĐPCM )
b ) \(x^2-4xy+5y^2\)
\(=\left(x^2-4xy+4y^2\right)+y^2\)
Ta có : \(\left(x-2y\right)^2\ge0\)
\(y^2\ge0\)
\(\Rightarrow\left(x-2y\right)^2+y^2\ge0\) ( ĐPCM )
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
https://olm.vn/hoi-dap/detail/88061957704.html bạn tham khảo câu hỏi này
a) \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Vì \(\left(x-2y+1\right)^2\ge0\)
\(\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)với mọi x,y (ĐPCM)
b) \(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+1\)
\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(2x-1\right)^2\ge0\)
\(\left(x-3y\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\ge1>0\)vợi mọi x,y (ĐPCM)
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
a) \(x^2-4x+5\)
= \(\left(x^2-2.2x+4\right)+1\)
= \(\left(x-2\right)^2+1\)
Ta co: \(\left(x-2\right)^2>=0\)
=>\(\left(x-2\right)^2+1>=1>0\)
b) \(x^2-4xy+5y^2\)
=\(\left(x^2-4xy+4y^2\right)+y^2\)
= \(\left(x-2y\right)^2+y^2\)
Ta co: \(\left(x-2y\right)^2>=0\)
\(y^2>=0\)
=> \(\left(x-2y\right)^2+y^2>=0\)
c) \(3-2x-x^2\)
= \(-\left(x^2+2x\right)+3\)
= \(-\left(x^2+2.1x+1-1\right)+3\)
= \(-\left(x+1\right)^2+4\)
=
Hình như câu này sai đề ...
a) \(x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1>0\)
b) \(x^2-4xy+5y^2\)
\(=x^2-4xy+4y^2+y^2\)
\(=\left(x-2y\right)^2+y^2\)
Dấu = xảy ra khi: \(x=y=0\)
c) \(-3-2x-x^2\)
\(=-2-x^2-2x-1\)
\(=-2-\left(x+1\right)^2=-\left[2+\left(x+1\right)^2\right]< 0\)