Cho a:b=b:c=c:a và a+b+c khác 0. Tính giá trị của M=a^2 x b^2 x c^1930 : b^1935
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
a:b=b:c=c:a
hay \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=k\)
\(\Rightarrow\)a = bk ; b = ck ; c = ak
\(\Rightarrow\)abc = abck3
\(\Rightarrow\)k3 = 1
\(\Rightarrow\)k = 1
Từ đó suy ra : a = b = c
Ta co\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)
Ap dung tinh chat day cac ti so bang nhau ta co
\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)=\(\frac{a+b+c}{b+c+a}\)=1
\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)a=b=c(dpcm)
đề có sai ko bn đầu kia có d thì phải + d/a nữa chứ nhỉ để a=b=c=d
\(=>\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)(t/c dãy tỉ số bằng nhau)
\(=>a=b=c=d\)
a:b=b:c=c:a=>a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra: a/b=1 suy ra: a=b
b/c=1 =>b=c
suy ra: a=b=c
suy ra: a^2.b^2.c^1930:b^1935=1.1.1:1=1