chung minh (n+1) (3n+2) chia het cho 2
giup minh nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
(3n+1)\(⋮\)(2n+3)
=>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)
=> [6n+2-6n-9] \(⋮\)(2n+3)
=> -7 \(⋮\)(2n+3)
=>2n+3\(\in\)Ư(-7)={-1;-7;1;7}
Ta có bảng:
2n+3 | -1 | -7 | 1 | 7 |
n+3 | 7 | 1 | -7 | -1 |
n | 4 | -2 | -10 | -4 |
Vậy n\(\in\){4;-2;-10;-4}
(n2 +5)\(⋮\)(n+1)
=>[(n2 +5)-n(n+1)]\(⋮\)(n+1)
=>[n2+5-n2-1] \(⋮\)(n+1)
=> 4 \(⋮\)(n+1)
=>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng:
n+1 | -1 | -2 | -4 | 1 | 2 | 4 |
n | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy n={-2;-3;-4;0;1;3}
Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
Chia n ra thành :
1) số chẵn (2k)
2) số lẻ (2k + 1)
Ta có :
Với n = 2k
=> (n + 1)(3n + 2)
= (2k +1)(3.2k+2)
= (2k + 1)(3k + 1).2
chia hết cho 2 vì có 2 trong tích
Với n = 2k + 1
=> (n + 1)(3n + 2)
= (2k + 1 + 1)(3.(2k+1) + 2))
=(2k + 2)(6k + 3 + 2)
= 2.(k + 1)(6k + 5)
Chia hết cho 2 vì có 2 trong tích
=> Điều phải chứng minh